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ABSTRACT 

 

This study investigated a special case of packing problems involving identical and fixed sized spherical 

objects and rectangular parallelepiped box. It determined the possible patterns of piling spherical objects 

into a parallelepiped box so that the box attains its maximum content. The study explored on the different 

ways of piling and identified those that yield content greater than that in ordinary piling. The effects of 

the dimensions of a box on whether or not it is possible to obtain a new pile that tends to increase the 

population density of the box is determined. The results show that there are smooth and behaved piling 

patterns that tend to increase the population density of the box from its default piling pattern. It is found 

that if the box can contain at least 5 spheres along its length, at least 3 spheres along its width and at least 

4 spheres along its height, then it is possible to modify the default pile pattern so that additional spheres 

can be fitted into the box. The mathematics of maximizing the content of the box, or by increasing its 

population density, is given in theorems and corollaries. Also, the proofs of the theorems are supplied to 

establish their mathematical viability. The results also show that it is possible to generate mathematical 

models that establish deterministic algorithms of maximizing content, or increasing population density of 

the parallelepiped box. The mathematical models developed are recommended for use in calculating the 

maximal content of a given parallelepiped container. Finally, it is recommended that further 

investigations on the same topic be conducted as the present study is in no way exhaustive. 
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INTRODUCTION 

 

With the growing recognition by educators 

worldwide of a learning philosophy (constructivism) 

and theories (e.g. Piaget and Bruner) that place 

student at the center of the educational processes, 

problem solving and mathematical investigation are 

now being placed at the core of mathematics learning. 

According to Yeo (2009), many school mathematics 

curricula such as those in Australia, New Zealand and 

the United Kingdom emphasize the use of problem 

solving and mathematical investigation in the 

teaching and learning of mathematics. 

 

What is mathematical investigation? A mathematical 

investigation is defined as a “collection of worthwhile 

problem solving tasks that has multidimensional 

content; is open-ended, permitting several acceptable 

solutions; is an exploration requiring a full period or 

several classes to complete; is centered on a theme or 

event; and is often embedded in a focus question. 

 
 
 
 
 

 

In addition, a mathematical investigation involves 

a number of processes, which include researching 

outside sources to gather information; collecting 

data through such means as surveying, observing, or 

measuring; collaborating, with each team member 

taking on specific jobs; and using multiple 

strategies for reaching solutions and conclusions” 

(www. beenleigss.eq.edu.au). 
 

According to Yeo (2009), some educators viewed 

mathematical investigation as “an open-ended 

problem or statement that lends itself to the possibility 

of multiple mathematical pathways being explored, 

leading to a variety of mathematical ideas and/or 

solutions” (Baily, 2007); as an “open problem with 

open goal” (Orton and Frobisher, 1996) and “open 

answer” (Pirie, 1987); as involving both “problem 

posing and problem solving” (Cai and Cifarelli, 

2005); and, among others, as the “process” (Evans, 

1987) involved in the investigative task. An open 

problem or investigative task “allows students 
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to choose what goal to pursue and an open answer 

allows them to have many correct answers” (Yeo 

and Yeap, nd). 
 

The benefits of mathematical investigation as an 

approach to teaching mathematics, according to 

some educators as cited by Yeo (2009), include a) 

“getting students more interested” (Davies, 1980) to 

learn and “more open to work mathematically” 

(Tanner, 1989). On the part of the learner, doing 

mathematical investigation, according to some 

researchers as cited by Nievera (2012), “deepening 

their understanding of the content of mathematics 

and challenges them to produce their own 

mathematics within their universe of knowledge” as 

well as “developing their thinking processes and 

good mental habbit” (Orton and Frobisher, 2005). 
 

The subject of this investigation, which is 

maximizing a parallelepiped box with spherical 

objects, is one of the many circle and sphere packing 

problems in operation research that have been 

explored by many researchers worldwide using 

various sophisticated strategies such as the 

development of “algorithms ranging from computer  
– aided optimality proofs, to branch-and-bound 

procedures, to constructive approaches, to multi-start 

nonconvex minimization, to multiphase heuristics, and 

metaheuristics” (Hifi and M’Halla, 2009). Among the 

studies conducted on packing problems involving 

circular and spherical objects include that of Liu, et al. 

(2009) on “An Effective Hybrid Algorithm for the 

Circles and Spheres Packing Problems”, Molnar, 

(1978) on “Packing of Congruent Spheres in a Strip”,  
Birgin, (2008) on “Minimizing the object 

dimensions in circle and sphere packing problems”, 

Wang, (1999) on “Packing of unequal spheres and 

automated radio surgical treatment planning”, 

Gensane, (2004) on “Dense packing of equal spheres 

in a cube”, Stoyan, and Yaskov, (2008) on “Packing 

identical spheres into a rectangular parallelepiped”, 

Stoyan, et al. (2003) on “Packing of various radii 

solid spheres into a parallelepiped”, and Sutou, and 

Dai, (2002) on “ Global optimization approach to 

unequal sphere packing problems in 3D”. 

 

The foci of the strategies developed in the above 

studies have been on determining the optimal 

densities of packing both 2D and 3D rectangular and 

circular spaces with circular and spherical objects 

 
 

wherein either the radii of the objects are minimized 

to achieve optimal cover of a given space or the 

dimensions of the containing spaces are minimized. 

Although the authors described in great details how 

their strategies operate for some specified number of 

objects to be contained or for some given dimensions 

of containing spaces, the implementations of such 

strategies were not shown in the published papers. 

 

In this work, the special case of packing problem 

involving spheres is considered in which the 

spheres to be packed are identical and fixed size and 

the unit of measure of the dimensions of the 

parallelepiped container is the diameter of one 

sphere. In order to develop some deterministic 

formulas of manually computing the maximal 

content of a given parallelepiped container, only the 

more behaved positioning patterns that have 

potentials of increasing the packing densities are 

considered. In contrast, the above mentioned studies 

deal with random scattering of both identical and 

varied sized objects in the containing spaces, which 

is the general case in packing problems. 

 

This simple investigatory work explored the 

possible ways of populating a given rectangular 

parallelepiped box with identical spherical objects 

so that the box will attain its maximal content. 

Figure 1 shows the default position of the spheres in 

the parallelepiped box in which the spheres are 

positioned along straight lines both vertically and 

horizontally.  
 
 
 
 
 
 
 
 
 
 

 

Figure 1. Default pile of spheres 

in the paralleleppiped box 

 
 

 

If the dimension of the box is measured in terms of 

the number of spheres that can be fitted along its 

sides, or that the unit of measure of the box is one 

sphere, then the total number (Vo) of spheres in the 

box when fully filled and arranged in default position, 
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as in figure 1, is determined using the typical formula 

of the volume of a parallelepiped box below:  

Vo = l w h Where: l = number of spheres at the 

length of the box  
w = number of spheres at the width 

h = number of spheres at the height. 

 

The above rectangular, or default position, of the 

spheres is called the old pile, Po. If the default 

position is completely altered such that no two 

consecutive layers of the pile remain in their original 

position then the resulting arrangement shall be 

called the new pile, Pn. Now, is it possible to obtain 

a Pn that contains more spheres than Po? 

 

Research Questions 

 

1. What is the minimum dimension of the 

parallelepiped box that permits the generation of a 

new pile, Pn, which contains more spheres than 

the default pile, Po? 
 

2. What are the forms of the new piles that can 

maximize the space in a box? 

 
3. What are the dimensions of the pile that can 

contain the least or the most number of spheres? 

 

3. What are the mathematical models representing 

the volumes of the new piles? 
 

 

METHODOLOGY 

 

The study is exploratory in nature. The default pile 

(Po), which is a pile in rectangular form, is altered in 

any form inside the parallelepiped box to produce a 

new pile. Different forms of piling arrangements were 

explored on different dimensions of the parallelepiped 

boxes. The effects of the different forms of piling on 

the vertical heights of the piles were calculated and 

compared to determine which form of piling yields the 

greatest number of spheres. Also, the effects of the 

dimensions of a box on the amount of spheres to be 

fitted in the different piles were calculated to 

determine which form of piling is most dense or least 

dense for a particular range of dimensions. The 

mathematical models of the different forms of piling 

were developed and their proofs constructed to show 

their mathematical viability. 

 
 
 
 
 
 

 

RESULTS AND DISCUSSION  
The exploration of the topic starts with the given 

conjecture below. 

 

Conjecture  

If the old pile, Po, is altered as described above, 

then the new pile, Pn, may contain a number of 

spheres less than, equal to, or greater than that of 

the old pile, Po. 
 

Proof of the Conjecture  
The proof of the conjecture may be given in the 

proofs of the succeeding theorems. 
 

The possibility of Pn to contain more number of 

spheres than Po by any complete alteration of Po may 

happen only if the said alteration will result in the 

creation of space that will allow the addition of at least 

one layer of spheres in Pn. The nature of alteration that 

has the net effect of increasing the number of 
 
 
 
 
 
 
 
 

 

a b 

 

Figure 2 (a) Default position os spheres 

2  (b) Altered position of spheres 

 
 

layers to be contained in the new pile is to arrange 

the spheres in pyramidal formations by positioning 

each sphere in the alternate layers (or even number 

layers) at the middle of any four spheres in the 

lower layers (or odd number layers) as in figures 

2(a) and 2(b) below. 
 

Based on the alteration shown in figure 2(b), the 

relevant question to be answered is how many 

layers of spheres in Po will allow the addition of one 

more layer in Pn? 

 

Theorem 1 gives the minimum number of layers in 

Po that can allow the addition of one more layer in Pn. 
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Theorem 1: Let Po be altered in which each piece of sphere in the alternate layers (or even number layers) 

is positioned at the middle of any four pieces of sphere in the lower layers (or odd number layers). Let this 

form of alteration be called An alteration. Then the minimum number, n, of layers in Po that can allow the 

addition of one more layer in Pn by An alteration is 4. 
 

Proof 

 

If An alteration is performed, then the vertical distance between the centers of the spheres across any two   
 
 
 
 
 
 
 
 
 
 

 

Figure 3. Distances between the centers of spheres 
 

layers in Po becomes the slant height in Pn. Moreover, when the centers of any five spheres across two 

consecutive layers are joined together as in figure 3 below, they form an equilateral pyramid having a square base. 

 

Since Pyramid ABCDF is equilateral, AB = BC = CD = AD = AF = DF = BF = CF = d (or the diameter of 

a sphere). Also, since the base ABCD is a square, the length of line segment AC is computed using 

Pythagorean Theorem as follows: 

AC
2

= AB
2

 +BC
2

 
 

AC
2

=d 
2

+d 
2

= 2d 
2

 
 

AC = 2d,  
 

But  AC = 2 AE  , 
 

         

 

   
 

which yields 
    

 AC  
 

2  
 

 

AE = = d 

 

 2 2 
  

 
 

Also, triangle AEF forms a right triangle with the right angle at E. Hence, the distance, EF, between the 

centers of the spheres across two consecutive layers in Pn, is 
 
 
 
 
 
 
 

 

SinceEF = 2
2 d <d, then it shows that the alteration of the positions of the spheres in Pn creates a height 

space that may accumulate to allow the addition of a layer. In order to determine the minimum number, n,   

of layers in Po that permits the addition of a la yer in Pn, it is natural to think that such is possible only if the 
 

 

difference between the height, h, of P 
   2 d  

of a layer P , which is the value of        

o 
and hn of P is equal to the 

 

 2  n n  
  

the new distance between the centers of spheres across layers. 
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Thus, 
 

h-h
n 

=
2
2

 d 
 
 

In terms of the diameter, d, of the sphere, the number of layers, hn , in Pn and h of Po are 

2 d  
h = (n-1) +d  and h=nd, respectively.  

n
 2 

 

Thus, 
 

            2  
d 

                    
 

      h-h   =                     
 

          n2                          
 

      2  d              2   d         
 

                                 

nd-[(n -1)         + d ] =          

2              2              
 

  2         2           2        
 

nd – [n d  

2 

- d    + d ]= d 
 

2              2         
 

           
d 

      
d 

             2  d 
 

         

2 
     

2 
             

                            

                              

(1 /2 )[2n d – n      +       - 2d ]=  

                              2     
 

      [2nd –n   +        - 2d]   
 

               =  

              2 d   2 d         
 

      2nd –n   = 2d          

            2 d                     
 

                       

                 n= 2d/(22dd- 
 

                  

= 2/( 
 

d- ) 
     

                  2     
 

                       ≈ 4 
    

 

                  =3.4142     
  

as desired. 
 

Corollary 1: Let y be the number of layers that can be added to Pn by way of An alteration. Then the value 
 

of y for any given value of h is    
 

 h   
 

y = 
 

 

  

3.4142 
 

 

   
 

Which is the greatest integer less than or equal to
h

 . 
 

  3.4142  
  

 

Corollary 2: 

    

where k is 

 

The value of y is the same for the interval[y(3.4142) ]≤ k < [ ( y + 1)(3.4142) ] 
 

any specific number of rows in the interval. 

 

Illustrative Example  

How many layers of spheres can be added to the new pile, Pn, given the following layers of Po: 11, 13 

and 14? How many layers of spheres are in Pn? 

 

Solutions  
a. h=11 

 

y =  11  = [ 3.2218 ]= 3  
 

 

 

 

 

3.4142 
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The number of layers, hn, of Pn is h plus y. In symbol 
 

hn= h + y = 12 + 3 = 15.   
 

b. h=3        
 

y =  13  = [ 3.8076 ]= 3  
 

 

 

 

 

3.4142 

   
 

      
 

hn=13 + 3 = 16    
 

c. h = 14        
 

y =   14  = [ 4.1005  ]= 4  
 

 

 

  

 

3.4142 
  

 

      
 

Thus the value of y is the same for the different values of h within the interval [11, 13]. 

 

The next problem to resolve is to determine a model for computing the volume of Pn whenever the 

dimension of Po is given. Theorem 2 gives the formula for the volume of Pn. 
 

Theorem 2: Let Vo be the volume of Po with dimensions, lwh, where l is the length, w is the width and h is 

the height. Also, let y be the number of layers to be added to Pn due to An alteration. If Vn is the volume of 

Pn and the unit of measure is one sphere, then Vn is given below. 
 

Vn= 1/2 (h + y) ( 2lw-l-w +1) if h and y are the same parity  
= 1/2 [2lw(h+y) - (l+w-1)(h+y-1)], if h and y are of different parity  

h 

where 
y

= 3.4142 
 
Proofs 

 

Case 1:Both h and y are of the same parity     
 

a) Both h and y are odd numbers     
 

If h is odd then the number of odd layers in his 

(h +1)  (h −1) 
 

 

and that of the even layers is 2 
.
 Since the odd 

 

2 
  

layers are to remain unaltered and the even layers are the ones to be altered, then the dimension of the odd 
 

layers is while that of the even layers is (l-1)(w-1). Also, if h is odd, the last layer in h has a dimension of lw 

and thus the first layer in y has a dimension of (l-1)(w-1). Thus  

V n= ( 
h

 2
+1

)lw + ( 
h

 2
−1

)(l −1)(w −1) + ( 
y

 2
+1

)(l −1)(w −1) + ( 
y
2
−1

)lw 
 
 

= 1 2[(h +1)lw + (h −1)(l −1)(w −1) + ( y +1)(l −1)(w −1) + ( y −1)lw] 
 

= 1 2(lwh + lw + lwh − wh − lh + h − lw + w + l −1+ lwy 
 

− wy − ly + y + lw − w − l +1+ lwy − lw) 
 

= 1 2(2lwh + 2lwy − wh − wy − lh − ly + h + y)  
= 1 2[(2lw(h + y) − h(w + l −1) − y(w + l −1)] 

 
= 1 2[2lw(h + y) − (l + w −1)(h + y)] 

 
= 1 2 (h + y)(2lw − l − w +1) 

 
 

i 52 



January-June 2015   

b) Both h and y are even numbers 

 

If both h and y are even numbers then the number of odd and even layers in both h and y is equally divided, 

which are 
h for both odd and even layers in h and 

y 
for both odd and even layers in y. Thus  

2 

 

2 
 

           
 

  V = h lw + h (l −1)(w −1) + y lw + y (l −1)(w −1)  

  

2 
    

  n 2   2 2  
 

= 1 2(lwh + lwh − wh − lh + h + lwy + lwy − wy − ly + y)  
= 1 2[2lwh + 2lwy − h(l + w −1) − y(l + w −1)  
= 1 2(2lw(h + y) − (l + w −1)(h + y)]  
= 1 2 (h + y)(2lw − l − w +1) 

 

Case 2: h and y are of different parity 
 

a. h is odd number and y is even number 

 

 
If h is an odd number, the number of layers in h that is to remain unaltered is 

(h +1) 
 

 2 and that to be altered is 
 

 (h −1) . Since y is even, the number of layers in y that is to remain unaltered and that to be altered are the  

2 
 

 y            
 

same whi ch is . Thus 
h +1 

 

h −1 
 

y 
 

y 
  

 

  2 
V n= ( )lw + ( )(l −1)(w −1) + lw + (l −1)(w −1) 

 
 

    
2 2 

 
2 2 

 
 

           
  

= 1 2(lwh + lw + lwh − wh − lh + h − lw + w + l −1+ lwy − wy − ly + y) 
 

= 1 2[(2lw(h + y) − (h + y −1)(l + w 

−1)] b. h is even and y is odd 

           h 
 

If h is even, the number of layers to remain unaltered and that to be altered is both ; while for y the number 
 

     (y + 1)   (y - 1) 2  
 

of layers in it that is to be altered is 2 and that to remain unaltered is 2 . Hence, 
 

V = h lw + ( h ) (l - 1) (w- 1) + ( y - 1) ( l- 1) ( w-1)    
 

n 

             

2 2  2      
 

= 1/2[lwh + lwh - lh- wh + h + lwy +lw + lwy - ly - wy + y - lw + l + w - 1 )]  
= 1/2[2lw( h + y) - l(h + y - 1) - w (h + y - 1) + (h + y - 1)]  
= 1/2[2lw(h + y) - ( h + y - 1) (l + w- 1)] 

 

Illustrative Example 
 

How many spheres can be accomodated in a parallelepiped box with a default dimension of lwh =5x6x7? 
 

Solutions: find for Vo and Vn 
 

a. Vo = lwh = 5x6x7 = 210 
 

b. Vn, given h = 7  
 

 7  = [ 2.0502 ]  
 

 

 

 

3.4142 
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Since h is odd and y is even, the problem falls under case 2(a).  

Thus the number of spheres in Pn is 
 

V n= 1 2[(2lw(h + y) − (h + y −1)(l + w −1)] 
 

= 1 2[(2x5x6(7 + 2) − (7 + 2 −1)(5 + 6 −1)] 
 

= 1 2 (540 − 8(11)) 
 

= 1 2 (452)  
= 226 

 
 

 

The volume, Vn, of the new pile, Pn, is greater than the original volume, Vo, of the old pile, Po, because as 

earlier stated performing the alteration, An, creates space that allow the addition of some more spheres into 

the original pile. 
 

The next problem to resolve is to determine the minimum dimension of Po that allows the addition of one 

sphere to Pn. It is noted that the increase in the number of layers in Pn by An alteration results in the 

displacement of some spheres in the layers altered, thus making it difficult to say whether the alteration will 

result in increase or decrease of the content of Pn. If the number of spheres displaced is equal to the number 

of spheres in the layer added, then Vo of Po contains as much as Vn of Pn. If the number of spheres 

displaced is more than that of the layers added, then Vn contains lesser number of spheres than Vo. Finally, 

if the number of spheres displaced is less than that of the layers added, then Vn is greater than Vo. 
 

Theorem 3 gives the minimum dimensions of Po in which it is possible to add a sphere to Pn by An alteration. 

 

Theorem 3: Let the dimension of Po be lwh, where l is the length, w the width and h the height. If one 

sphere is the unit of measure, then the minimum dimension of Po that will allow the addition of a sphere in 

Pn by An alteration is as given below 

 

DimPo = lwh = 5 x 3 x 4 

 

Proof 

 

If Vn is made to exceed Vo by one sphere by way of An alteration, then the equation below is in order 

 

Vn– Vo= 1 

 

Given h = 4 as the minimum number of layers in Po that will allow the addition of a layer (y= 1) in Pn, 

what remains to be determined are the minimum length, l, and minimum width, w, of Po that will make Vn 

exceed Vo by one sphere. 
 

Since h = 4 and y = 1, the situation falls under case 2 of Theorem 2 and thus the appropriate formula to 

determine Vn is 

 

V n= 1 2[2lw(h + y) − (h + y −1)(l + w −1)] 
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Thus 

⇔ 1 2[2lw(h + y) − (h + y −1)(l + w −1)] − lwh = 1 

 

Vn - Vo = 1 
   

⇔ 1 2[2lw(4 +1) − (4 +1−1)(l + w −1)] − lw(4) = 1 
 

⇔ 1 2[10lw − 4(l + w −1)] − 4lw = 1 
 

⇔ 1 2(10lw − 4l − 4w + 4) − 4lw = 1 
 

⇔ (5lw − 2l − 2w + 2) − 4lw = 1 

 

⇔ lw − 2l − 2w + 2 = 1 

 

⇔ l(w − 2) = 2w −1 

⇔ l = 2w −1  
w − 2 

 

Since  l ∈ Z and w − 2 ≠ 0, the least value that w can assume is 3. So if w = 3 then the value of l is 
 

l = 2w −1 = 2(3) −1 = 

5 w − 2 3 − 2 
 

Therefore, the minimum dimensions of Po that allow the addition of one sphere in Pn by An 

alteration is lwh = 5x3x4, as desired. 
 

Illustrative example 

 

1. Let the dimension of Po be the required minimum of lwh = 5x3x4. Verify that it is possible to insert 

a sphere  
into the pile. 

 

Solution: Find Vo and Vn     
 

a. Vo = lwh = 5x3x4 = 60  
 

b. Vn, given that h = 4   
 

 y = h  = 4  = [ 1 ]= 1  
  

 

 

 

 

   

4 

 
 

 4     
 

 

Because h = 4 and y = 1 are of different parity, the problem falls under case 2. So the volume, Vn, of the 
 

new pile is 
V n= 1 2[2lw(h + y) − (h + y −1)(l + w −1)]  

 
   

= 1 2[2(5)(3)(4 +1) − (4 +1−1)(5 + 3 −1)]  
= 1 2(150 − 28) 

 
= 1 2(122) 
= 61  

 

V n−V o= 61− 60 = 1 
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Thus if the default dimension of the pile is lwh = 5x3x4, then a sphere can be inserted by performing 

An alteration. 
 

2. Suppose the dimension of Po is lwh = 6x6x3, how many spheres can be contained in 

Pn? Solution: Find Vo and Vn. 

a. Vo =lwh = 6x6x3 = 108  
b. Vn, given h = 3 

 

y = 
h

 = 
3

 = [ 0.75 ]= 0 4 4 
 

Since h = 3 and y = 0 are of different parity, then the problem falls under case 2. Thus the volume, Vn, 
of the new pile is  

V n= 1 2[2lw(h + y) − (h + y −1)(l + w −1)] 
 

= 1 2[2(6)(6)(3 + 0) − (3 + 0 −1)(6 + 6 −1)] 
 

= 97 

 

There are 11 spheres displaced by An alteration, but there is no layer added because h=3<4 (which is the 

minimum value of h to allow the addition of a layer). Thus Vn < Vo. 
 

3. Given that Po has the dimension lwh = 4x3x11, find the number of spheres in Pn. 

 

Solution: l = 4, w = 3, h = 11     
 

y =  h  =  11  = [ 3.22 ] = 3  
 

 

  

 

 

 

 

3.4142 

 

3.4142 

  
 

        
 

 
 

h and y are of the same parity, so the problems falls under case 1. Hence 

 

V n= 1 2(h + y)(2lw − l − w +1) 
 

= 1 2 (11 + 3)[(2)(4)(3) − 4 − 3 +1)]  
= 126 

 

Whereas Vo = lwh = 4x3x11 = 132. 

 

Vn contains less number of spheres than Vo because the value of l is less than the required minimum value 

of 5, even though the value of the other variables are way above the minimum. 
 

c. Find the content of Pn, given the dimension of Po to be lwh = 6x3x4 

 

Solution: l = 6, w = 3, h = 4 

 

y =  4  = [ 1.17 ] = 1  
 

 

 

 

 

3.4142 
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h and y are of different parity, so the problem falls under case 2. Hence Vn is 
 

Vn = 1/2[2lwh(h+y) - (h=y - 1) (l + w-1] 
 

V n= 1 2[2(6)(3)(4 +1) − (4 +1−1)(6 + 3 −1)] 
 

= 74 
 

Whereas Vo is 

Vo = lwh = 6x3x4 = 72 

 

Vn is greater than Vo because the dimension of Po exceeds the required minimum of 5x3x4. 

 

Rather than solving for the value of both Vo and Vn to know whether or not Vn contains less than, equal 

to, or greater than that of Vo, it is much more efficient to accomplish the same objective by plugging in the 

data to the function that governs the difference between the two volumes (Vn – Vo). Theorem 4, gives the 

form of the said function of difference. 
 

Theorem 4: Let Dn be the number of spheres to be displaced from or added to Vn due to An alteration, 

then Dn = 1 2[2lwy − (h + y)(l + w −1)] , if h & y are of the same parity 

 

= 1 2[2lwy − (h + y −1)(l + w −1)], h & y are of different parity 
 

 h  
 

where y = 
 

 

 

3.4142 

 

  
  

Proof 

 

The number of spheres to be displaced from or added to Vn is that yielded when Vo is subtracted from 

Vn. Thus 

 

Dn= Vn - Vo 

 

Case 1: h and y are of the same parity 

D n = 1 2(h + y)(2lw − l − w +1) −V o 
 

= 1 2[(h + y)(2lw − l − w +1) − 2V o] 
 

= 1 2[(h + y)(2lw) − (h + y)(l + w −1) − 2lwh]  
= 1 2[2lwy − (h + y)(l + w −1)] 

 

Case 2: h and y are of different parity 

 

Dn = 1 2[2lw(h + y) − (l + w −1)(h + y −1)] − Vo 
 

= 1 2[2lwh + 2lwy − (l + w −1)(h + y −1) − 2lwh]  
= 1 2[2lwy − (l + w −1)(h + y −1)] 

 

Corollary 2: A zero value of Dn means Vo = Vn 

Corollary 3: A positive value of Dn means Vo < Vn  

Corollary 4: A negative value of Dn means Vo > Vn 
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Proofs 

 

Note that Dn = Vn – Vo. 

 

If Dn = 0 0 = Vn - Vo Vo = Vn. 
If D < 0 ⇒ V - V < 0 ⇒ V < V . 

If Dn
 > 0 ⇒ Vn

 - Vo
 > 0 ⇒ V n> V .o 

n  n o  n o 
 

 

Illustrative example 

 

For purpose of illustration, it is enough to deal with the 4th corollary. The other two corollaries can be 

easily verified from the previous examples. Let Po has a dimension of lwh = 5x3x2. Find Dn. 
 

Solution: Solve first for y and then for Dn.      
 

y =  h  =  112  = [[33.220..225858]=3] = 3  
 

 

  

 

 

 

 

3.4142 

 

3.4142 

 0 
 

        
  

Since h and y are of the same parity, the problem falls under case 1. Thus 

 

= 1 2[2(5)(3)(0) − (2 + 0)(5 + 3 −1)]  
= 1 2 (0 −14)  
= −7 

 

Because the value of Dn is negative, it means that Vo > Vn. In fact, the old pile, Po, contains 7 spheres 

more than that of the new pile, Pn. 
 

Theorem 5: If the dimension of Po is less than the minimum dimension of lwh = 5x3x4,then Vn ≤ 

Vo. Proof 

 

The dimension of Po is less than the minimum dimension of 5x3x4 if the dimension of a component is less 

than the minimum; that is, if l < 5, or w < 3, or h < 4. 
 

Case 1: l < 5, w = 3, h = 4 

 

If l< 5, then l can take any value from 2 to 4. It suffices to let l takes the highest value of 4. Moreover, the 

value of y is  
  

4 
   

 

y = 
  

= [ 1.1716 ] = 1 
 

3.4142  

 

   
 

Since h and y are of different parity, then 
 

Dn = 1 2[2lwy − (l + w −1)(h + y −1)] 
 

= 1 2[2(4)(3)(1) − (4 + 3 −1)(4 +1 −1)]  
= 0 

 

This means that Vn = Vo. Consequently Pn = Po 
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Case 2: w < 3, l = 5, h = 4 

 

The only possible value that w can take if it is less than 3 is 2. As before 
 

  

4 
   

 

y = 
  

= [ 1.1716 ]= 1 
 

3.4142  
 

   
  

Since h and y are of different parity, the problem falls under case 2 for Dn. Thus 
 

Dn = 1 2[2lwy − (l + w −1)(h + y −1)] 
 

= 1 2[2(5)(2)(1) − (5 + 2 −1)(4 +1 −1)]  
= -2 

 

This means that Vn contains 2 spheres less than that of Vo. Thus Pn < Po. 

 

Case 3: h < 4, l = 5, w = 3 

 

The allowable values that h can take are 2 and 3. Let h = 3. Moreover, in order to determine which 

case of Dn is to be considered, the value of y is solved. 
 

y =  3  = [ 0.88 ] = 0  
 

 

 

 

 

3.4142 
  

 

     
 

Since h and y are of different parity, the value of Dn is computed using 
 

Dn = 1 2[2lwy − (l + w −1)(h + y −1)] 
 

= 1 2[2(5)(3)(0) − (5 + 3 −1)(3 + 0 −1)] 
 

= -7 
 

The result means that Vn contains 7 spheres less than that of Vo. So Pn < Po. 

 

In all cases Pn  ≤ Po. 

 

From the foregoing results, it is seen that the given form of piling maximizes a parallelepiped space 

whenever the dimensions of the space meet the required minimum of lwh = 5x3x4; otherwise, the pile 

minimizes the content of the space. 
 

It should be noted that, by the manner Pn pile is formed in which the even number layers have dimensions of 

(l-1)(w-1) in exchange of achieving vertical compression so that extra layers can be added, the volume, 
 

Vn, of Pn is minimal if the value of h lies in between two consecutive multiples of 3.4142 .This assertion is 

given in theorem 6. 
 

Theorem 6. Let h be, as usual, the number of L W layers in Po. Then Vn of Pn attains its maximal value 
 

when h = [ y(3.4142) ] and attains it minimal values when [ y(3.4142) ] < k < [ ( y + 1)( 3.4142) ]. 
 

Proof      
 

Given two values of h, which are h1 = [ y(3.4142) ] and h2 = [ y(3.4142) ] +k, where k ≤ 3. Since h1 
 

is a multiple of [ y(3.4142) ] and h 
2 
lies in between [ y(3.4142) ] and [ ( y + 1)( 3.4142) ], it is enough to 

 

     
 

show that the number of spheres to be added to Pn for h1 is greater than or equal to that for h2. Thus if Dn1 

is the number of 
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spheres to be added to Pn for h1 and Dn2 is the number of spheres to be added to Pn for h2, it is enough to 

show that Dn1 – Dn2 ≥ 0 for k =1, 2, and 3. 
 

Without loss of generality, assume, initially, that both h1 and y are even. Then h2 is odd. Therefore 
 

Dn1= 1 2[2lwy − (h1 + y)(l + w −1)]   

Dn2 = 1 2[2lwy − (h2 + y −1)(l + w −1)]  

Dn1−Dn2 = 1 2[2lwy − (h1 + y)(l + w −1)] −1 2[2lwy − (h2 + y −1)(l + w −10] 

 

Now, let k = 1. Then h2 = h1 + 1, and 
 

Dn1 - Dn2  =  1 2[{2lwy − (h1 + y)(l + w −1)}−{2lwy − (h1 +1+ y −1)(l + w −1)}]  

= 1 2[{2lwy − (h1 + y)(l + w −1)}−{2lwy − (h1 + y)(l + w −1)}]  
= 0 

 
 
 

 

= 1 2[{2lwy − (h1+ y)(l + w −1)} − {2lwy − (h1+ y + 2)(l + w −1)}] 
 

= 1 2[−(h1 + y)(l + w −1) + (h1 + y +1)(l + w −1)] 
= (l + w −1) 
> 0  

 
 

 

Dn1 - Dn2  = 1 2[{2lwy − (h1 + y)(l + w −1)}−{2lwy − (h1 +3 + y −1)(l + w −1)}] 

= 1 2[{2lwy − (h1+ y)(l + w −1)} − {2lwy − (h1+ y + 2)(l + w −1)}] 

= 1 2[−(h1 + y)(l + w −1) + (h1 + y + 2)(l + w −1)] 

= (l + w −1)  
> 0  

The above results mean that when the value of h is 1 layer more than [ y(3.4142) ], the number of spheres that 

can be added to Pn is the same as when h is exactly the multiple of [ y(3.4142) ]. The value of Vn is least 
 

when h is 3 layers more than [ y(3.4142) ] , or when h = [ y(3.4142) ] + 3. Therefore Vn is maximum and Pn is 

most dense when h is exactly the multiple of [ 
y(3.4142)

 ], while Vn is minimum and Pn is least dense 
 

when h =
 [ y(3.4142) ] + 3, or when h = [ y(3.4142) ] -1. 

 
 

CONCLUSIONS AND RECOMMENDATIONS   
of  [ y(3.4142) ] , and attains its minimal content if 

 

    
 

From the proofs of the theorems, the conjecture its height is equal to [ y(3.4142) ] + 3, or equal to 
 

is clearly proven. That is, it is possible for a [ y(3.4142) ] 
 

parallelepiped box to contain more spheres than its  - 1. 
 

   

maximum content when in default position provided  
Further study on the topic may be conducted in 

 

that the dimensions of the box meet or exceed the 
 

 

order to explore and exhaust other possibilities 
 

required minimum of 5x3x4. Otherwise, the resulting 
 

pile, Pn, will contain lesser number of spheres than of obtaining new maximum that may exceed the 
 

the content of the original pile, P . The new pile, P , foregoing results of the present study, as the present 
 

o  n  

study is in no way exhaustive. 
 

attains its maximal content if its height is the multiple 
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