

Level of Competence of Faculty Members Among the State Universities and Colleges (SUCs) in Region III on Flexible Learning

Erwin C. Mina* and Amando S. Vinoya

College of Sciences, Tarlac State University

*Corresponding author email address: sirmines@gmail.com

ARTICLE INFO

Date Received: 09-02-2022

Date Last Revised: 05-30-2024

Date Accepted: 09-02-2025

Abstract

This quantitative descriptive survey determined the level of competence of faculty members of State Universities and Colleges on flexible learning in Central Luzon. Using non-probability-convenience sampling, 120 faculty members responded to the survey through Google Forms. A survey-questionnaire determined level of competence of the faculty to confidently teach flexible learning. SPSS version 23 software was used to compute data needed. Results revealed that majority of the faculty are female aged 31-40 years old designated as instructor with 1-5 years of teaching experience. Having 1-3 number of trainings on flexible learning, having laptop and webcam, internet connectivity and implement blended learning. The findings indicated that faculty members demonstrated a commendable level of competence in delivering instruction through flexible learning modalities, specifically in the domains of instructional course planning and development, instructional communication, instructional schedules and workload, and technological proficiency.

KEY WORDS

Education
Flexible Learning
Modality
Competency

Introduction

With online and offline connections, the world is a global village. The advent of economic crisis due to pandemic in Asia caused a hurricane all around the world which seems that global education system is in the middle. In contemporary times, we are witnessing phenomena that are both compelling and unconventional. It is to be hoped that, upon the eventual restoration of normalcy, valuable lessons will have been gleaned from these experiences. Despite early warnings advocating preparedness, disruptions to education are already evident. A foreseeable global crisis looms in the digital

knowledge era, one that is likely to yield far-reaching socio-cultural, economic, and political repercussions (Briggs, 2018; Global Coalition to Protect Education from Attack [GCPEA], 2018).

The emergence of COVID-19 pandemic switches educational institutions to go online and the emergence of remote teaching and learning modalities prompted by the widespread closure of educational institutions at all levels. Amidst the current context of pandemic politics, distance education has emerged as a prominent concern across diverse stakeholders—including policymakers, educational enterprises, non-

profit organizations, educators, parents, and students. This landscape is marked by multifaceted contestations over strategies for managing and resolving the crisis. Consequently, education has assumed the status of an emergency priority, with educational technologies increasingly framed and mobilized as critical components of frontline crisis response (Williamson et al., 2020).

Broadly speaking, the implementation of distance learning technologies within the educational sector necessitates extensive preparatory efforts involving educators, technical specialists, and parents. Furthermore, it entails addressing a range of administrative challenges related to the financial, technical, and organizational dimensions of supporting remote education systems. Technological advancements increasingly compel faculty to adopt novel strategies for the design, structuring, implementation, and evaluation of courses and instructional materials within digital learning environments. While the competencies required for effective online instruction largely align with those necessary for face-to-face teaching, it is generally assumed that prior teaching experience provides a foundational basis for adapting to online pedagogical contexts. However, some scholars challenge this assumption, arguing that online instruction differs fundamentally from traditional classroom teaching. They contend that the role of faculty in virtual settings involves distinct responsibilities, emphasizing the management of instructional time and virtual learning spaces, the application of digital classroom management strategies, and the capacity to foster student engagement through online communication channels (Martin et al., 2019).

Flexible learning is a multifaceted concept that encompasses a range of interpretations and understandings across educational contexts (Li & Wong, 2018). Generally, flexible learning is fundamentally designed to accommodate the diverse needs of learners, empowering them to assume greater responsibility for their own educational trajectories. Central to this approach is a learner-centered paradigm, wherein academic programs are structured to provide students with autonomy in determining the methods and modalities through which they engage with learning content. Flexible learning seeks to empower students by providing them with agency over key aspects of their educational experience, including the content, timing, location, and mode

of instruction. It emphasizes learner autonomy in determining the pace, place, and format through which learning occurs (Higher Education Academy, 2015).

Flexible learning is a pedagogical approach that allows for variability in instructional delivery, accommodating differences in time, place, and learner characteristics. While it often incorporates technological tools, its scope extends beyond mere reliance on digital platforms to encompass broader dimensions of instructional adaptability (Casiddu et al., 2016). While flexible learning often utilizes distance education methods and integrates educational technologies, its implementation can differ significantly depending on factors such as technological infrastructure, availability of digital devices, internet accessibility, digital literacy levels, and the instructional strategies employed (Macalde, 2020).

Furthermore, the development and implementation of academic programs, courses, and learning interventions are progressively being adapted to meet the diverse needs of learners, particularly in terms of learning location, pace, process, and outcomes (Gould et al., 2020). This approach typically entails the integration of both digital and non-digital technologies, incorporating multiple modes of instructional delivery such as traditional face-to-face teaching, off-campus learning formats, and blended and hybrid learning models. Consequently, it serves to uphold the continuity of inclusive and accessible education, particularly in contexts where conventional instructional methods are rendered impractical, such as during periods of national crisis or emergency (De Vera, 2020).

Indeed, faculty readiness for online instruction refers to the degree to which instructors possess the necessary knowledge, skills, and dispositions to effectively facilitate teaching in an online environment. This construct is typically assessed through their attitudes toward the significance of competencies required for effective online instruction, as well as their self-perceived confidence in their ability to teach in a digital environment. Faculty readiness for online teaching encompasses not only those currently engaged in online instruction but also those preparing to do so. It holds implications for instructional designers who support faculty in developing online teaching competencies, as well as for administrators responsible for providing

institutional resources and support. Comprehensive readiness requires that faculty demonstrate proficiency across four critical domains: instructional course planning and development, instructional communication, instructional schedules and workload, and technological proficiency (Budhrani et al., 2019). Competence and preparedness among Faculty highlights the necessity of implementing refresher programs that incorporate training in the use of both hardware and software tools, as well as the effective integration of instructional technologies into the teaching process. The motivational dimension of faculty readiness encompasses a positive disposition toward learning and intellectual engagement, a clear recognition of the personal and professional relevance of the knowledge, skills, and competencies being developed, and a sustained cognitive interest in addressing the demands and challenges of professional practice (Fedina et al., 2017).

Extensive research has explored the conditions that facilitate successful instructional delivery in such contexts, identifying four essential domains of faculty competency: pedagogical, social, managerial, and technical. These domains collectively influence an instructor's ability to design meaningful learning experiences, foster student engagement, manage virtual classrooms efficiently, and utilize digital tools effectively. Additionally, several studies have focused on delineating the functions, roles, and requisite competencies of faculty engaged in online education. Faculty competence in higher education is generally understood to encompass four broad domains: (1) instructional and learning strategies, (2) communication and interpersonal interaction, (3) course administration and organizational tasks, and (4) technological skills. Empirical studies investigating faculty competencies within virtual learning environments have consistently shown that online instructors assume multiple roles, extending beyond content delivery to include responsibilities in instructional design and planning, fostering social presence, employing effective pedagogical methods, managing digital tools, and overseeing course logistics (Martin et al., 2019).

In response to the initial criticisms following the shift in March 2020, according to Commission on Higher Education (CHED) Chairperson Prospero De Vera, flexible learning encompasses

a broader range of modalities compared to online learning. He emphasized that, unlike online learning which relies on internet connectivity, flexible learning encompasses a range of modalities, some of which do not require continuous or direct internet access. Instead, it highlights the deliberate design and delivery of educational programs, courses, and instructional interventions designed to address the varied needs of learners, particularly with respect to learning pace, geographical context, delivery modality, and intended learning outcomes (Parrocha, 2020).

Higher education institutions have demonstrated readiness to adopt various instructional modalities—including instruction delivered through fully online, blended learning, or scheduled in-person class sessions—depending on the easing of government-mandated quarantine measures. De La Salle University (DLSU), for example, introduced a technology-mediated educational framework known as the Remote and Engaged Approach for Connectivity in Higher Education (R.E.A.C.H), implemented by the Lasallian academic community which represents a strategic framework designed to ensure inclusive, accessible, and learner-centered education through remote engagement and digital connectivity. This model underscores the significance of continuous faculty-student engagement and delineates three structured modes of instructional delivery: (1) fully online learning, which includes both synchronous and asynchronous modalities; (2) hybrid learning, integrating online and face-to-face sessions; and (3) conventional in-person instruction, conducted when circumstances allow (DLSU, 2020b). Relatedly, Ateneo de Manila University initiated the Adaptive Design for Learning pilot, which integrates three distinct delivery modes: (1) online, (2) blended, and (3) in-person, whenever feasible. This model features specially designed courses that align with faculty teaching styles while addressing the unique needs and contexts of learners (Joaquin et al., 2020).

The University of Santo Tomas (UST), through its proprietary learning management system, the UST Cloud Campus, implemented the Enriched Virtual Mode (EVM) as its primary instructional delivery approach which merges synchronous and asynchronous online instruction with offline learning activities to enhance accessibility and flexibility in education. Beyond the practice of

team teaching, the EVM encompasses various instructional strategies, including (1) the enhancement of professional competencies facilitated through strategic collaboration with industry stakeholders and alumni networks, (2) joint online learning projects with international partner institutions, and (3) remote engagement with community-based organizations (UST, 2020). Similarly, the University of the Philippines (UP) System shifted to a blended learning model by utilizing existing digital platforms, including the University Virtual Learning Environment (UVLE) and the University of the Philippines Open University (UPOU). UPOU serves as a leading institution in the implementation of technology-mediated instruction, further extending its reach by offering free specialized courses aimed at enhancing competencies in online instruction and knowledge acquisition (UPD-College of Education, 2020). The Department of Education (DepEd) implemented a distance learning framework consisting of three core delivery modalities: (1) the distribution of printed self-learning modules to learners; (2) the utilization of DepEd Commons, an online platform developed to support various alternative learning approaches; and (3) the transmission of educational content through radio and television broadcasts (Magsambol, 2020).

The Philippines is not alone in confronting the educational challenges posed by the COVID-19 pandemic; several Southeast Asian countries have likewise responded innovatively and begun to transition toward emerging paradigm in education. As early as May 2020, Indonesia, Thailand, and Vietnam had initiated various forms of distance learning. For instance, Thailand's Ministry of Education initially developed an instructional program delivered through the Distance Learning Television (DLTV) platform, which integrates traditional TV broadcasts with online instruction (Ahmad & Saqib, 2022). Similarly, Indonesia's Ministry of Education and Culture, launched the "Learning from Home" initiative, focusing on enhancing literacy, numeracy, and character development across elementary and secondary education levels (Balakrishnan, 2020; Yamin, 2020). The Ministry of Education and Training (MOET) of Vietnam organized a national online conference, facilitated through 300 live meeting hubs, to deliberate on strategic approaches for enhancing the quality and effectiveness of online education. This event, attended by leaders from higher

education institutions along with representatives from technology and service sectors, including the Viettel Group, VNPT, MobiFone, Vietnamobile, Microsoft, Google, Amazon, and FPT, preceded the launch of the country's comprehensive educational program (Trung et al., 2020; Joaquin et al., 2020).

Contemporary higher education institutions (HEIs) are increasingly challenged to deliver responsive and contextually relevant educational programs that cultivate self-sufficient learners equipped with advanced problem-solving capabilities. These evolving demands—coupled with heightened competition and diminishing financial resources—are prompting educators and academic administrators to critically reassess and innovate their instructional delivery models. A considerable proportion of higher education institutions, with particular emphasis on state universities and colleges, are increasingly adopting strategies that emphasize flexible learning modalities and the integration of computer-based technologies. A substantial body of research on the implementation of flexible learning approaches centers on evaluating their pedagogical soundness as a foundation for delivering effective educational programs. Specifically, research inquiries often focus on whether flexible learning approaches—particularly those utilizing internet-based technologies—yield learning outcomes comparable to those of traditional face-to-face education, and whether they offer sufficient added value to justify the associated investments of time, cost, and effort.

Indeed, faculty readiness for flexible learning is one of the pillars of quality, alongside student satisfaction, learning efficacy, access, and institutional cost-effectiveness. Therefore, it is essential to examine the elements of faculty preparedness for flexible learning, especially as online education becomes increasingly widespread and influenced by evolving factors such as adoption rates, learner expectations, levels of support, and various other conditions. The evaluation of faculty engagement in flexible learning encompasses several key dimensions, including readiness, knowledge, perceived importance, and confidence (Rollnick et al., 2001). Consequently, the constructs of competence and confidence, particularly as understood through the framework of self-efficacy, are critical in assessing faculty readiness to implement flexible learning modalities (Spector & De la Teja, 2001).

In flexible learning environments, faculty are expected to demonstrate competence across multiple domains. Faculty readiness is particularly reflected in the perceived significance of these competencies and their influence on instructors' self-efficacy in delivering instruction effectively. Bigatel et al. (2012) found that respondents acknowledged the necessity of specific teaching behaviors to ensure the quality and efficacy of online instructional delivery. In parallel, Bawane and Spector (2009) identified key competencies essential to flexible teaching, including the ability to establish learning communities, foster interactivity, facilitate team projects, maintain effective communication, and provide adequate learner support. Martin et al. (2019) emphasized that online instructors are required to develop a distinct set of competencies encompassing pedagogical, psychological, and social dimensions. Similarly, Guasch et al. (2010) identified multiple roles assumed by online faculty, including responsibilities in instructional design, social engagement, pedagogical delivery, technological proficiency, and course management.

It is important to assess how prepared faculty members are for online teaching by considering the level of competence required. According to Denis et al. (2004), instructors considered skills that encourage student interaction and help build strong relationships with students to be highly important. Similarly, faculty members also emphasized the significance of organizational tasks such as keeping records, reviewing course content for accuracy, evaluating student progress, and staying current in their field (Moshki et al., 2016). Self-efficacy, according to Bandura (1977), pertains to an individual's belief in their capacity to perform specific tasks successfully. Randall (2001) posits that this concept reflects an individual's confidence in their ability to effectively engage with or facilitate learning within an online environment. Likely, Tschannen-Moran et al. (1998) define teaching self-efficacy as an educator's belief in their capacity to effectively promote student learning and support the development of learners' knowledge, skills, and values.

Republic Act No. 10650, otherwise known as the "Open Distance Learning Act," establishes the legal framework for broadening and enhancing equitable access to quality higher education by institutionalizing open learning as a guiding philosophy for the delivery of educational services.

The legislation further aims to institutionalize distance education as a viable, efficient, and effective modality for facilitation of effective and rigorous higher and technical education across the nation. Moreover, the legislation applies to both public and private higher education institutions, as well as post-secondary schools in the Philippines, that implement programs through open learning and distance education modalities. In accordance with the objectives outlined in Republic Act No. 10650, open distance learning in higher education institutions and technical-vocational programs in the Philippines aims to promote equitable access to quality education through the use of open educational resources (OER) and the delivery of instruction across diverse modalities, including print-based materials, audio-visual media, digital and computer-based platforms, virtual classrooms, and, when necessary, face-to-face interactions. Pursuant to Republic Act No. 7722, known as the "Higher Education Act of 1994," Republic Act No. 11469 or the "Bayanihan to Heal as One Act," and Commission en banc Resolution No. 412-2020, series of 2020, the Commission on Higher Education formulated and implemented the Guidelines on Flexible Learning (FL) for adoption by all public and private higher education institutions in the Philippines. This policy response was necessitated by the critical educational disruptions caused by the surge in COVID-19 cases nationwide. In fact, the Philippines encountered significant challenges resulting from the emergence of COVID-19 pandemic cases. Among higher education institutions, particularly SUCs, the prevention of COVID-19 transmission within the academic community became a central institutional priority. Consequently, the imposition of community quarantine measures necessitated the immediate suspension of face-to-face classes. These legal frameworks collectively aim to maximize learner flexibility in terms of content, scheduling, accessibility, and assessment strategies by leveraging both digital and non-digital resources. Higher education institutions have been authorized to adopt flexible learning and various alternative instructional methods in response to the limitations of traditional classroom-based education. Such discretion must be exercised in a manner that is pedagogically sound, transparent, and aligned with outcome-based education principles, as stipulated in CHED COVID-19 Advisory No. 6. Higher education institutions are expected to adopt data-informed and participatory decision-making

processes in determining and implementing the most contextually appropriate and feasible forms of flexible learning and instructional delivery. These decisions should be guided by institutional capacity, prevailing local conditions, and the directives issued by national government agencies and local government units.

This study provides a comprehensive understanding of the skills and attributes that faculty members consider essential for effectively delivering an online course or course component in a flexible learning environment. It specifically explores their attitudes and capabilities in the domains of instructional course planning and development, instructional communication, instructional schedules and workload, and technological proficiency, as outlined in CMO No. 4, series of 2020. Additionally, the findings of this study provide lucrative and helpful insights to the students, teachers, scholars, school administrators, parents and school staff a deeper understanding of their role that effective implementation of flexible learning is a key educational responsibility.

It is assumed in this study that flexible learning, as a learner-centered paradigm, is fundamentally shaped by students' needs and is contingent upon the preparedness and adaptability of the instructor. It should offer maximum flexibility in content, schedule, access, and assessment through the integration of digital and non-digital tools. Thus, the study speculates that determining the competency of faculty readiness is considered an important factor of quality education in flexible learning. Fundamentally, assessing faculty readiness within campus environments is essential to inform institutional leadership in formulating policy adjustments that enhance teaching and learning conditions. The commitment and active engagement of faculty in flexible learning modalities are integral to the institutional success and sustainability of emerging distance education initiatives. However, flexible learning presents considerable complexity and demands for faculty, often placing substantial pressure on them to develop and organize digital resources for online learners (Espiritu, 2016). Competency, in this context, refers to the knowledge, skills, or abilities that enable individuals to perform specific professional tasks effectively and in accordance with industry or institutional standards.

This study examined the competency levels of faculty members in State Universities and Colleges in Region III in the domains of instructional course planning and development, instructional communication, instructional schedules and workload, and technological proficiency.

Meth o d o l o g y

The quantitative descriptive survey research design was used which sought to provide an accurate and systematic account of a specific population, condition, or phenomenon of the study. A suitable method for identifying the characteristics, frequencies, trends, and categories of the study. The study aims to determine the significant relationship between variables such as respondents' profiles and their competence in flexible learning (McCombes, 2019).

Locale of the Study

This study was conducted in the Central Luzon region of the Philippines. The higher education institutions included in the study were Aurora State College of Science and Technology (ASCOT), Bataan Peninsula State University (BPSU), Bulacan State Agricultural College (BSAC), Bulacan State University (BulSU), Central Luzon State University (CLSU), Don Honorio Ventura State University (DHVSU), Nueva Ecija University of Science and Technology (NEUST), Pampanga State Agricultural University (PSAU), Philippine Merchant Marine Academy (PMMA), President Ramon Magsaysay State University (PRMSU), Tarlac Agricultural University (TAU), and Tarlac State University (TSU). Respondents are tenured faculty members aged 25-60 years old with academic ranks from instructor to professor.

Population Sampling

The study utilized non-probability convenience sampling based on the accessibility and availability of qualified respondents during data collection. Elements were included in the sample due to their spatial or administrative proximity to the data collection site, ensuring accessibility (Etikan, 2016).

Table 1a shows the number of respondents per SUC in Region III.

Table 1a*Distribution of Target Respondents*

State Universities and Colleges	Number of Respondents
ASCOT	6
BPSU	12
BASC	6
BulSU	19
CLSU	9
DHVSU	10
NEUST	11
PSAU	9
PMMA	6
PRMSU	11
TAU	9
TSU	11
TOTAL	120

Instrumentation and Data Collection

Data for this research were gathered through a survey administered via the Google Forms. Descriptive research is commonly undertaken by researchers and educators to gather information that enhances understanding of individuals' competencies, attitudes, opinions, demographic characteristics (such as age and gender), beliefs, and behaviors. The use of surveys as a data collection method is particularly effective in facilitating the systematic acquisition of such information in descriptive research (Irwin & Stafford, 2016). The survey is composed of two parts: Part I is concerned on the demographic profile of the respondents. This included age, sex, academic rank, length of teaching experience, number of relevant trainings on flexible learning, available gadgets to be used in the conduct of flexible learning, internet connectivity and learning modality. On the level of competency, Part II examines the faculty's level of competence in delivering instruction through flexible learning modalities, with emphasis on instructional course planning and development, instructional communication, instructional schedules and workload, and technological proficiency. Part II of the research instrument

was adapted with modifications from the study of Martin et al. (2019).

The survey-questionnaire was administered using the Google Forms electronic platform and distributed to the twelve State Universities and Colleges in Region III. Prior to the sending of the instrument, the researchers sent communication letters seeking permission from the concerned authorities (Office of the University/College Presidents) for their approval. After the approval, the researchers then sent the link to the target respondents through their emails/and or FB messenger.

Furthermore, participation of respondents in this research study is entirely voluntary. Respondents have the right to decline participation, omit any question, or withdraw from the survey at any stage without facing any form of penalty or disadvantage. All information provided by the respondents was treated with the utmost confidentiality and was used solely for academic research purposes. No personally identifiable information was collected unless explicitly stated and agreed to by the participant. The data was analyzed in aggregate form, ensuring that no individual respondent can be identified in any reports, presentations, or publications derived from this study. And all collected data was securely stored and managed in strict accordance with the research ethics guidelines and data protection regulations established by Virgen Milagrosa University Foundation.

Validation of the Research Instrument

The instrument used undergone content validation by experts to ascertain the validity of the tool utilized. Three experts in the field of research, two experts who are in-charge of the flexible learning from their respective universities validated the instrument.

With the result of 4.76 – highly valid, it permitted the researchers to propel in administering the questionnaire to the respondents through Google Forms.

Tools for Data Analysis

Percentage and weighted means were used in the treatment of the demographic profiles of the respondents. Simple linear regression analysis

was employed to determine the relationship between the respondents' profile and their level of competency. Hence, a statistical software, SPSS Statistical Package version 23, was used to compute the data needed.

Tables 1b shows the interpretation of the gathered data on the level of competency of the faculty on flexible learning.

Results and Discussion

Tables 2a – 2h present the demographic profile of the respondents. Table 2a indicates that the majority of faculty members are between 31 and 40 years old (37 or 30.83%). The least of the respondents belong to the age group 61 years old and above. In terms of sex (Table 2b), more than half of the respondents (72 out of 120) were females while the remaining were males.

Table 1b

Interpretation of the Data Collected Regarding the Faculty's Level of Readiness in Terms of Their Competencies Essential for Effective Implementation of Flexible Learning

Scale*	Range of Mean	Descriptive Interpretation	Specific Interpretation
5	4.21-5.00	Very High level of Ability	Have a very great extent of ability on FL
4	3.41-4.20	High level of ability	Have a great extent of ability on FL
3	2.61-3.40	Moderate level of ability	Have an average extent of ability of FL
2	1.81-2.60	Low level of ability	Have a limited extent of ability on FL
1	1.00-1.80	Very Low level of ability	Have a very limited extent of ability on FL

Table 2a

Age Profile of the Faculty Members

Age	Frequency	Percentage %
21-30	24	20.00
31-40	37	30.83
41-50	26	21.67
51-60	26	21.67
61 and above	7	5.83

As to academic rank, Table 2c shows that most of them are designated as instructor (66 or 55.0%) where three (2.5%) are appointed as Professor. As to length of teaching, Table 2d displays that most of them have been teaching for 1-5 years (41 or 34.17%), and 13 of them (10.83%) had been teaching for 6-10 years. This infers that most of the respondents are junior faculty members.

With regard to number of relevant trainings on flexible learning, it is widely held that faculty members had 1-3 trainings (70, 58.33%) and only eight of them (6.67%) had 7-9 trainings in flexible learning as shown in Table 2e.

Further, most of respondents have laptops or desktops with webcam (70 or 58.33%) as their primary gadgets for flexible learning but only four of them have webcam while (18 or 15%) use their smartphones or mobile phones as shown in Table 2f. In addition, Table 2g reveals that most of the respondents have internet connectivity,

Table 2b

Sex Profile of the Faculty Members

Sex	Frequency	Percentage %
Male	48	40.00
Female	72	60.00

Table 2c

Academic Rank Profile of the Faculty Members

Academic Rank	Frequency	Percentage %
Instructor	66	55.00
Assistant Professor	27	22.50
Associate Professor	24	20.00
Professor	3	2.50

Table 2d*Length of Teaching Profile of the Faculty Members*

Length of Teaching	Frequency	Percentage %
1-5 years	41	34.17
6-10 years	13	10.83
11-15 years	21	17.50
16-20 years	15	12.50
21 years and above	30	25.00

Table 2e*Number of Relevant Trainings on FL Profile of the Faculty Members*

Number of Relevant Training on Flexible Learning	Frequency	Percentage %
1-3	70	58.33
4-6	30	25.00
7-9	8	6.67
10 and above	12	10.00

Table 2f*Available Gadgets Utilized in the Conduct of FL Profile of the Faculty Members*

Available Gadgets to be used in the conduct of Flexible Learning	Frequency	Percentage %
Laptop/ desktop (with webcam) only	70	58.33
Smartphones/mobile only	18	15.00
All of the above	32	26.67

Table 2g*Internet Connectivity of FL Profile of the Faculty Members*

Internet Connectivity	Frequency	Percentage %
Yes Strong	70	58.34
No Weak	18	33.33
	32	8.33

however only 58.34% (70) have strong internet connectivity ; while 8.33% (10) do not have internet access.

Lastly, Table 2h shows that more than half of the respondents (90 or 75%) implemented blended learning in their schools while only nine (7.5%) apply offline learning. This suggests that 8.33% of respondents having no internet access.

Tables 3a, 3b, 3c and 3d depict the level of competency of the faculty members to confidently teach through flexible learning. Table 3a shows that majority of faculty members demonstrate a highly advanced capability in designing online course orientations—such as introductory modules and "getting started" sections—as well as in formulating clear and measurable learning objectives; develop instructional materials in video format, such as lecture recordings, demonstrations, and tutorial videos; and manage grades online. Most of the faculty members have a very high level of ability to utilize the course design in flexible learning. The computed average weighted mean (AWM) of 4.6 denotes that faculty respondents have a very great extent of ability on course design in flexible learning and thus they are highly ready to undergo flexible learning. Incorporating supplementary resources into course design strategies fosters deeper student engagement with and exploration of the course content. During the development of online curricula, faculty engaged in course design are expected to assess both strengths and areas for improvement to ensure effectiveness. When knowledge or skill gaps are identified, faculty members may address these deficiencies through self-directed inquiry or participation in relevant professional development opportunities (Farmer & Ramsdale, 2016). Alternatively, to address identified knowledge or skill gaps, faculty may seek external support, such as engaging the expertise of a learning designer to assist in the development of the online curriculum. In the framework of flexible learning,

Table 2h*Learning Modality Profile of the Faculty Members*

Learning Modality	Frequency	Percentage %
Online	21	17.50
Offline	9	7.50
Blended	90	75.00

Table 3a*Faculty Level of Competency on FL Along Course Design*

	Indicators	5	4	3	2	1	WM	DE
1	Design and implement a course orientation applicable to both online and offline modalities	89	31	0	0	0	4.7	VH
2	Write measurable learning objectives	85	35	0	0	0	4.7	VH
3	Design learning activities that provide students opportunities for interactions (e.g., discussion forums, wikis)	77	43	0	0	0	4.6	VH
4	Organize instructional materials into modules or units	72	43	5	0	0	4.6	VH
5	Produce instructional strategies suited to both online and offline learning environments	66	44	8	2	0	4.5	VH
6	Employ varied instructional strategies suited to both online and offline learning environments	74	42	3	1	0	4.6	VH
7	Create online quizzes, assignments and tests	81	35	4	0	0	4.6	VH
8	Orient the teachers, parents and students- policies and directions.	89	30	1	0	0	4.7	VH
9	Provide complete and appropriate references/ supplementary materials	71	44	3	2	0	4.5	VH
Averaged Weighted Mean							4.6	VH

Legend: 4.21-5.00 = Very High; 3.41-4.20 = High; 2.61-3.40 = Moderate; 1.81-2.60 = Low; 1.00-1.80 = Very Low, Weighted Mean; Average Weighted Mean; Descriptive Equivalence

faculty members have much to consider in advance in learning designing to include the interactions between learners and materials be considered most as well as what happens outside of the learning. When faculty members apply the principles of constructive alignment between learning outcomes and assessment in course design, it is imperative that they thoughtfully integrate support systems for both students and instructors. Effective course planning must account not only for the learners and the educational opportunities provided to them, but also for the educators responsible for facilitating the learning process (MacLean & Scott, 2011).

In terms of course communication, Table 3b displays that majority of faculty members demonstrate a high proficiency in disseminating announcements and email reminders to course participants, as well as in providing feedback on assignments, typically within a seven-day period following submission. Generally, the respondents have a very high level of competency on course communication in flexible learning. The obtained average weighted mean of 4.5 implies that

majority of the faculty members have remarkable competency on course communication in flexible learning.

Course communication competencies encompass various modes of expression, including vocalization, nonverbal cues such as body language, along with verbal elements including speech, singing, and variations in tone of voice. These competencies also encompass non-verbal communication forms, including sign language, paralanguage, touch, eye contact, and written communication. Likely, these competencies involve communication skills essential to both intrapersonal and interpersonal processes, such as listening, observing, speaking, questioning, analyzing, and evaluating. Additionally, information and communication technology competencies involve utilizing digital tools and technologies to access and disseminate information. ICT encompasses any technological medium utilized to produce, manipulate, store, transmit, or disseminate information. ICT competencies pertain to the effective use of technological tools for managing and processing

Table 3b*Faculty Level of Competency on FL Along Course Communication*

Indicators		5	4	3	2	1	WM	DE
1	Design and facilities discussion forums	60	56	3	0	1	4.5	VH
2	Utilize email as a medium for communicating with students	57	56	5	2	0	4.4	VH
3	Provide timely responses to student inquiries, typically within 24 to 48 hours	58	54	5	3	0	4.4	VH
4	Deliver feedback on student assignments within a specified timeframe, such as seven days from the date of submission	43	73	3	1	0	4.3	VH
5	Utilize synchronous and asynchronous learning platforms	76	41	2	1	0	4.6	VH
6	Clearly articulate expectations regarding student conduct	67	51	2	0	0	4.5	VH
7	Convey and reinforce adherence to academic integrity policies	70	46	3	1	0	4.5	VH
8	Comply with copyright and fair use regulations when using copyright materials from online and offline sources	67	49	4	0	0	4.5	VH
9	Apply accessibility policies to accommodate student needs	65	52	3	0	0	4.5	VH
Averaged Weighted Mean							4.5	VH

Legend: 4.21-5.00 = Very High; 3.41-4.20 = High; 2.61-3.40 = Moderate; 1.81-2.60 = Low; 1.00-1.80 = Very Low, Weighted Mean; Average Weighted Mean; Descriptive Equivalence

information, incorporating all forms of technology employed in information handling and communication. These competencies are essential for enhancing course communication, particularly in the context of teaching and learning processes within online education environments (Mandal, 2018). Communication timeliness is warranted in an online education (Skramstad et al., 2012).

Online courses pose distinct challenges related to student engagement and the effective management of time. Consequently, the development of well-structured course designs—grounded in a thorough understanding of time management within academic contexts—is crucial for educators involved in the creation of online learning environments. (Miertschin et al., 2015). Numerous empirical studies (Bassoppo-Moyo, 2006; Ko & Rossen, 2010; Limperos et al., 2015) have investigated the quality of online courses from multiple perspectives. A recurring finding across these studies is that time management, particularly as demonstrated by instructors, constitutes a

critical factor influencing the overall quality of online education.

Moreover, the findings indicated that faculty members generally held positive perceptions regarding their time management skills, which encompassed scheduling, planning, managing documentation, addressing interruptions, and setting priorities. However, the study also concluded that an increase in faculty workload negatively impacts their ability to effectively manage time (Gul et al., 2021).

Table 3d shows that the majority of faculty members strongly concur that proficiency in fundamental technical knowledge for flexible learning includes proficiency in basic computer operations and the use of collaborative tools. In general, most of the faculty respondents strongly agree that technical know-how should be one of the main level of competence in flexible learning. Thus, the obtained AWM of 4.3 reveals that the respondents show a good level of competence and that they are highly ready for flexible learning.

In this era of rapid change, educators are increasingly acknowledging the necessity for students to acquire the ability to develop and apply knowledge creatively, rather than merely recalling information presented to them. Achieving

this objective necessitates a transition from conventional, information-transmission-based instruction to pedagogical approaches that foster deep and adaptable understanding. This shift in curriculum and teaching practices represents a

Table 3c*Faculty Level of Competency on FL Along Time Management*

Indicators	5	4	3	2	1	WM	DE
1 Allocated designated weekly hours to facilitate course delivery in both online and offline modalities	62	54	4	0	0	4.5	VH
2 Leverage features of the learning management system - both online and offline - to optimize time management	65	53	2	0	0	4.5	VH
3 Employ facilitation strategies to effectively allocate and manage time devoted to course activity	55	59	5	1	0	4.4	VH
4 Weekly time allocation for grading assignments	53	63	2	2	0	4.4	VH
5 Weekly time allocation for the assessment of student assignments	60	58	1	1	0	4.5	VH
Averaged Weighted Mean						4.5	VH

Legend: 4.21-5.00 = Very High; 3.41-4.20 = High; 2.61-3.40 = Moderate; 1.81-2.60 = Low; 1.00-1.80 = Very Low, Weighted Mean; Average Weighted Mean; Descriptive Equivalence

Table 3d*Faculty Level of Competency on FL Along Technical Know-how*

Indicators	5	4	3	2	1	WM	DE
1 Demonstrate fundamental computer skills, including document editing and file management	75	44	1	0	0	4.6	VH
2 Demonstrate the ability to navigate and utilize course components within a learning management system (e.g., Moodle, Canvas, Blackboard)	42	69	8	1	0	4.3	VH
3 Use the learning management system roster create and manage student groups	44	63	12	1	0	4.3	VH
4 Use online and offline tools for collaboration	59	58	2	1	0	4.5	VH
5 Produce and edit videos using digital editing tools like iMovie, Movie Maker, Kaltura, and PowerDirector	32	64	21	3	0	4.0	H
6 Disseminate open educational resources, including instructional websites, web-based materials, games, and simulations	53	60	7	0	0	4.4	VH
7 Craft/Layout self-learning modules (SLMs)	53	60	7	0	0	4.4	VH
Averaged Weighted Mean						4.3	VH

Legend: 4.21-5.00 = Very High; 3.41-4.20 = High; 2.61-3.40 = Moderate; 1.81-2.60 = Low; 1.00-1.80 = Very Low, Weighted Mean; Average Weighted Mean; Descriptive Equivalence

complex endeavor for educators, requiring the acquisition of new knowledge, skills, and belief systems. Effective instructional change requires professional development to support and guide teachers through the transition. Emerging technologies are increasingly perceived as promising solutions to the longstanding constraints associated with traditional professional development approaches. The World Wide Web provides extensive multimedia resources, interactive tools, and telecommunication capabilities that offer substantial potential to enhance and support teacher teaching (Wiske et al., 2001).

Findings confirm a significant positive relationship between technological competence and effectiveness in online teaching (Masry-Herzalah & Dor-Haim, 2022). Furthermore, teachers' resistance to change significantly influenced instructional effectiveness by moderating correlation exists between technological competency and successful outcomes in online teaching. Nevertheless, findings regarding the significance of specific tasks will serve as a foundation for faculty development initiatives designed to enhance instructors' technical competencies, thereby supporting effective online teaching practices (Bigatel et al., 2012).

The faculty's level of competence in flexible learning indicates that course design ranked highest, followed by instructional communication, instructional schedules and workload, and technological proficiency. Faculty competence is critical to the effectiveness of the teaching-learning process in flexible learning.

Statistically, Table 4 shows the relationship between the number of training and level of competency of the faculty on flexible learning. At 0.05 level of confidence, it can be observed

from the table that number of training attended and participated by the faculty illustrates positive linear relationship (0.876) with their level of ability to confidently teach through flexible learning. This implies that increased number of trainings attended by faculty members warranted confidence toward flexible teaching-learning process.

In the field of education, workshops and seminars may encompass instructional development and various teaching-related responsibilities, including curriculum planning and evaluation, facilitating curricular change, and fostering educational improvement at the institutional level (De Grave et al., 2014). Depending on their specific objectives, workshops and seminars may be directed toward individuals, groups, or entire organizations. This format is often effective due to the benefits of face-to-face professional development and collegial interaction, which can promote meaningful learning and transformative change (Byham-Gray et al., 2008).

The findings of the present study support those of Essien et al. (2016), indicating a positive relationship between the frequency of teachers' participation in in-service training, seminars, and workshops. Likewise, teachers' participation in seminars has a significant effect on their effectiveness in teaching-learning process (Neng & Cheo, 2022).

Primary barriers to online teaching include limited familiarity with digital instructional tools, low digital literacy, unstable internet connectivity, time management difficulties, and insufficient instructional support. A well-structured, need-based teacher training program significantly improves online teaching quality by enhancing technological proficiency, confidence, satisfaction, motivation, time management, and professional conduct (Ahmmmed et al., 2022).

Table 4

Relationship Between the Number of Training and Level of Competence of the Faculty on FL

Level of Competence	R	R Square	Adj. R Square	Std. Error of the Estimate
Training	0.876	0.767	0.691	0.544

Legend: Exactly -1. A perfect downhill (negative) linear relationship; -0.70. A strong downhill (negative) linear relationship; -0.50. A moderate downhill (negative) relationship; -0.30. A weak downhill (negative) linear relationship; 0. No linear relationship; +0.30. A weak uphill (positive) linear relationship; +0.50. A moderate uphill (positive) relationship; +0.70. A strong uphill (positive) linear relationship; Exactly +1. A perfect uphill (positive) linear relationship

In flexible learning, course design is foundational as it determines how content is structured and delivered to students. Faculty members must think beyond traditional methods to create a learner-centered environment that accommodates various needs. Faculty can design courses in smaller modules that allow students to progress at their own pace (Anderson, 2008). This flexibility is particularly important for adult learners or those balancing work and study. A combination of asynchronous and synchronous caters to different learning styles and schedules. This approach is important for fostering engagement while offering flexibility (Bates, 2015). Despite the flexibility, the level of competence of faculty must ensure that learning objectives are clear and measurable. This provides structure and helps students understand what they need to achieve (Biggs & Tang, 2007). However, the level of competence of faculty may struggle with balancing flexibility and structure in course design, ensuring the course remains rigorous while being accessible to students with diverse needs (Garrison et al., 2001).

Effective communication is crucial in flexible learning, as it ensures students understand the course structure, expectations, and available support. Faculty members often use platforms like Moodle, Canvas, or Blackboard to post announcements, share materials, and facilitate discussions. These platforms provide a central hub for communication, allowing students to access information anytime (Siemens, 2005). Communication through regular emails or announcements helps students stay informed about deadlines, changes in the schedule, and upcoming assessments (Lee, 2015). This is particularly important in asynchronous courses, where students may not have regular face-to-face contact with instructors. Eventually, creating opportunities for students to ask questions, participate in discussions, and engage in peer-to-peer interaction is vital for fostering a sense of community (Moore, 2013). This level of competence among faculty is ensuring consistent communication can be difficult, particularly with large classes or students who may be less familiar with digital communication tools. Faculty need to find ways to keep all students engaged (Liu et al., 2017).

Clearly, effective course management ensures that the flexible learning environment is organized and conducive to student success.

Faculty can use diverse forms of assessment, such as quizzes, peer assessments, projects, or presentations, to accommodate different learning preferences (Gikandi et al., 2011). And providing timely feedback is also crucial in keeping students on track. Also, faculty members need systems in place to monitor student progress, identify at-risk students, and provide academic support where needed. This may involve using analytics tools to track engagement or providing personalized feedback (Horizon Report, 2015). Further, faculty must balance flexibility with clear timelines to ensure that students can manage their learning effectively due to some students may need additional support to manage deadlines in a flexible learning environment (Bates, 2015). Though, faculty may face difficulties in managing diverse student schedules and ensuring that all students meet deadlines in a flexible course structure. Technology issues or accessibility concerns may also arise, requiring faculty to be adaptable in their management strategies.

Indeed, flexible learning offers faculty the opportunity to create more inclusive and adaptable learning environments. By carefully designing courses, communicating effectively, and managing the learning process, faculty can support students across diverse educational settings. The success of flexible learning depends on careful planning and ongoing support for both students and instructors.

Conclusions

Faculty members of SUCs Region III are middle aged adults, female, most of them are instructors, with insufficient teaching experience, inadequate trainings, with strong internet connections, and blended learning as their flexible learning modality. Faculty members highly manifests positive attitude towards flexible learning. Further, faculty members demonstrate a high level of competence in implementing flexible learning, particularly in the domains of instructional course planning and development, instructional communication, instructional schedules and workload, and technological proficiency. Nevertheless, continuous professional development and capacity-building initiatives for faculty, especially in times of crisis, ensures that educators are competent in navigating flexible learning modalities.

Recommendations

Based on the conclusions, the following recommendations are proposed: (1) An action plan will be presented to the university officials for their information and scrutiny, then for their implementation; (2) Better to have the faculty members be life-long learners in quest of improving themselves by using flexible learning and embracing the changes under the new normal education; and (3) Parallel studies are encouraged to be conducted to ascertain the findings of the study and to include other significant variables.

Conflict of Interest Statement

The authors declare no conflicts of interest related to this publication.

Acknowledgment

The researchers having gone through such motivating experience would like to acknowledge with sincere appreciation and deep gratitude to the technical contributions made by Dr. Jose Emmanuel C. Mandapat, Dr. Jonathan C. Diola, Dr. Editha R. Pridas, Dr. Efren Y. Ignacio and Dr. Emerson B. Cuzzamu which ultimately resulted to the completion of this work.

References

Ahmad, M.M., & Saqib, S.E. (2022). Pandemic in the land of the smile: the case of COVID-19 outbreak in Thailand in 2020. In *Pandemic Risk, Response, and Resilience* (pp. 41-49). Elsevier.

Ahmmed, S., Saha, J., & Tamal, M.A. (2022). Effectiveness of Need-Based Teacher's Training Program to Enhance Online Teaching Quality. *Education Research International*.

Anderson, T. (2008). *The theory and practice of online learning*. Athabasca University Press.

Balakrishnan, P. (2020). Education in the age of COVID-19: Educational responses from four Southeast Asian countries. *Int. Stud. Educ. Adm.*, 48, 102-108.

Bandura, A. (1977). Self-efficacy: toward a unifying theory of behavioral change. *Psychological review*, 84(2), 191.

Bassoppo-Moyo, T.C. (2006). Evaluating eLearning: A front-end, process and post hoc approach. *International Journal of Instructional Media*, 33(1), 7-23.

Bates, A.W. (2015). *Teaching in a digital age: Guidelines for designing teaching and learning*. Tony Bates Associates Ltd.

Bawane, J., & Spector, J.M. (2009). Prioritization of online instructor roles: implications for competency-based teacher education programs. *Distance education*, 30(3), 383-397.

Bigatel, P.M., Ragan, L.C., Kennan, S., May, J., & Redmond, B.F. (2012). The identification of competencies for online teaching success. *Journal of Asynchronous Learning Networks*, 16(1), 59-77.

Biggs, J., & Tang, C. (2007). *Teaching for quality learning at university*. Open University Press.

Briggs, B. (2018, December 28). Education under attack and battered by natural disasters in 2018. *Theirworld*. <https://theirworld.org/news/education-under-attack-in-2018-conflicts-naturaldisasters>

Budhrani, K., Jokiah, A., Martin, F., Moore, R.L., & Wang, C. (2019). Professional development support for the online instructor: Perspectives of US and German instructors. *Online journal of distance learning administration*, 22(3).

Byham-Gray, L., Brody, R., Tatum, C., O'Sullivan-Millet, J., & Touger-Decker, R. (2008). Perceived needs for graduate level clinical nutrition education for registered dietitians. *Topics in clinical nutrition*, 23(4), 320-332.

Cassidy, A., Fu, G., Valley, W., Lomas, C., Jovel, E., & Riseman, A. (2016). Flexible Learning Strategies in First through Fourth-Year Courses. *Collected essays on learning and teaching*, 9, 83-94.

De Grave, W., Zanting, A., Mansvelder-Longayroux, D.D., & Molenaar, W.M. (2014). Workshops and seminars: enhancing effectiveness. *Faculty Development in the Health Professions: A Focus on Research and Practice*, 181-195.

De La Salle University (2020b). Coping with Challenges and Learning during the Enhanced Community Quarantine Period. <https://www.dlsu.edu.ph/2nd-term-faqs/>

Denis, B., Watland, P., Pirotte, S., & Verday, N. (2004, April). Roles and competencies of the e-tutor. In Networked Learning Conference 2004.

De Vera, P.E. (2020). Presentation of CHED Chairman J. Prospero E. De Vera, III to the 36th Inter-Agency Task Force on Emerging Infectious Diseases on May 13, 2020. <https://chedro3.ched.gov.ph/wp-content/uploads/2020/10/CMO-No.-4-s.-2020-Guidelines-on-the-Implementation-of-Flexible-Learning.pdf>

Espiritu, J.L. (2016). Cultivating an e-learning culture. Presented at the National Conference on Technology in Education, SMX Mall of Asia, Manila, Philippines.

Essien, E.E., Akpan, O.E., & Obot, I.M. (2016). The Influence of In-Service Training, Seminars and Workshops Attendance by Social Studies Teachers on Academic Performance of Students in Junior Secondary Schools In Cross River State, Nigeria. *Journal of Education and practice*, 7(22), 31-35.

Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. *American journal of theoretical and applied statistics*, 5(1), 1-4.

Farmer, H., & Ramsdale, J. (2016). Teaching competencies for the online environment. *Canadian Journal of Learning and Technology/ La revue canadienne de l'apprentissage et de la technologie*, 42(3).

Fedina, N.V., Burmykina, I.V., Zvezda, L.M., Pikalova, O.S., Skudnev, D.M., & Voronin, I.V. (2017). Study of Educators' and Parents' Readiness to Implement Distance Learning Technologies in Preschool Education in Russia. *Eurasia Journal of Mathematics, Science and Technology Education*, 13(12), 8415-8428.

Garrison, D.R., Anderson, T., & Archer, W. (2001). Critical inquiry in a text-based environment: Computer conferencing in higher education. *The Internet and Higher Education*, 2(2-3), 87-105.

Global Coalition to Protect Education from Attack. (2018). Education under attack 2018. Protecting education. http://www.protectingeducation.org/sites/default/files/documents/eua_2018_full.pdf

Gikandi, J.W., Morrow, D., & Davis, N.E. (2011). Online formative assessment in higher education: A review of the literature. *Computers & Education*, 57(4), 2333-2351.

Gould, H., Marshall, H., Yung-Hsiang, F., & Fermin, E.A. (2020). Reimagining equitable access: challenges and opportunities in online teaching and learning. In *Education Future Mini Conference: Higher Education Partnerships Webinar Series: Reimagining the future of UK-East Asia Higher Education Partnerships*.

Guasch, T., Alvarez, I., & Espasa, A. (2010). University teacher competencies in a virtual teaching/learning environment: Analysis of a teacher training experience. *Teaching and Teacher Education*, 26(2), 199-206.

Gul, R., Tahir, I. U., & Batool, T. (2021). Impact of teachers' workload on their time management skills at university level. *Indian Journal of Economics and Business*, 20(3), 819-829.

Higher Education Academy. (2015). Framework for flexible learning in higher education. <https://www.heacademy.ac.uk/system/files/downloads/flexible-learning-in-HE.pdf>

Horizon Report. (2015). The 2015 horizon report: Higher education edition. The New Media Consortium.

Irwin, C.W., & Stafford, E.T. (2016). Survey Methods for Educators: Collaborative Survey Development (Part 1 of 3). REL 2016-163. *Regional Educational Laboratory Northeast & Islands*.

Joaquin, J.J. B., Biana, H.T., & Dacela, M.A. (2020). The Philippine higher education sector in the time of COVID-19. *Frontiers in Education* (p. 208). *Frontiers*.

Ko, S., & Rossen, S. (2010). *Teaching online: A practical guide*. Routledge.

Lee, J. (2015). Flexible learning in higher education: What role do communications play? *The International Journal of Educational Management*, 29(4), 532-548.

Limperos, A.M., Buckner, M.M., Kaufmann, R., & Frisby, B.N. (2015). Online teaching and technological affordances: An experimental investigation into the impact of modality and clarity on perceived and actual learning. *Computers & Education*, 83, 1-9.

Li, K.C., & Wong, B.Y.Y. (2018). Revisiting the definitions and implementation of flexible learning. *Innovations in open and flexible education*, 3-13.

Liu, X., Rios, A., & Yildirim, I. (2017). Online learning in higher education: The influence of the internet and technology on student engagement and learning. *Educational Technology & Society*, 20(3), 100-110.

Macalde, R. (2020). Presentation of Dr. Robertino Macalde during the CHED-SEAMEO Joint Webinar on May 12, 2020. <https://chedro3.ched.gov.ph/wp-content/uploads/2020/10/CMO-No-4-s.-2020-Guidelines-on-the-Implementation-of-Flexible-Learning.pdf>

MacLean, P., & Scott, B. (2011). Competencies for learning design: A review of the literature and a proposed framework. *British Journal of Educational Technology*, 42(4), 557-572.

Magsambol, B. (2020). No student left behind? During pandemic, education 'only for those who can afford'. *Rappler*. <https://rappler.com/newsbreak/indepth/education-only-for-people-who-can-afford-coronavirus-pandemic>.

Mandal, S. (2018). The competencies of the modern teacher. *International Journal of Research in Engineering, Science and Management*, 1(10), 351-360.

Masry-Herzalah, A., & Dor-Haim, P. (2022). Teachers' technological competence and success in online teaching during the COVID-19 crisis: The moderating role of resistance to change. *International Journal of Educational Management*, 36(1), 1-13.

Martin, F., Budhrani, K., & Wang, C. (2019). Examining Faculty Perception of Their Readiness to Teach Online. *Online Learning*, 23(3), 97-119.

Martin, F., Wang, C., Jokiah, A., May, B., & Grubmeyer, S. (2019). Examining Faculty Readiness to Teach Online: A Comparison of US and German Educators. *European Journal of Open, Distance and E-learning*, 22(1), 53-69.

McCombes, S. (2019). How to write a research proposal.

Miertschin, S.L., Goodson, C.E., & Stewart, B.L. (2015). Time management skills and student performance in online courses. In 2015 ASEE Annual Conference & Exposition (pp. 26-1585).

Moore, M.G. (2013). *Handbook of distance education* (3rd Ed.). Routledge.

Moshki, M., Noghabi, A.D., Darabi, F., Palangi, H.S., & Bahri, N. (2016). The effect of educational programs based on the theory of planned behavior on parental supervision in students' television watching. *Medical Journal of the Islamic Republic of Iran*, 30, 406.

Neng, S.L., & Cheo, N. (2022). The effect of teachers' participation in seminars on their teaching effectiveness in secondary schools in Tubah Sub Division. *Procedia of Philosophical and Pedagogical Sciences*, 178-191.

Parrocha, A. (2020). HEIs May Hold Limited Face-to-face Classes in MGCQ Areas. Quezon City, PH: Philippine News Agency.

Randall, F.A. (2001). Factor analysis of online instruction self-efficacy using the Tennessee online instruction survey. The University of Tennessee.

Rollnick, S., Mason, P., & Butler, C. (2001). *Health behavior change: A guide for practitioners*. Edinburgh, UK: Churchill Livingstone.

Siemens, G. (2005). Connectivism: A learning theory for the digital age. *International Journal of Instructional Technology and Distance Learning*, 2(1), 3-10.

Skramstad, E., Schlosser, C., & Orellana, A. (2012). Teaching presence and communication timeliness in asynchronous online courses. *Quarterly Review of Distance Education*, 13(3), 183.

Spector, J.M., & De la Teja, I. (2001). Competencies for online teaching. ERIC Clearinghouse on Information & Technology, Syracuse University.

Trung, T., Hoang, A.D., Nguyen, T.T., Dinh, V.H., Nguyen, Y.C., & Pham, H.H. (2020). Dataset of Vietnamese student's learning habits during COVID-19. *Data in brief*, 30, 105682.

Tschannen-Moran, M., Hoy, A. W., & Hoy, W. K. (1998). Teacher efficacy: Its meaning and measure. *Review of educational research*, 68(2), 202-248.

University of the Philippines - College of Education (2020). Education Resilience and Learning Continuity Plan. Quezon City, PH: University of the Philippines - College of Education.

University of Santo Tomas. (2020). Institutional Continuity Plan during Extended and Post-ECQ. Manila, PH: University of Santo Tomas.

Williamson, B., Eynon, R., & Potter, J. (2020). Pandemic politics, pedagogies and practices: digital technologies and distance education during the coronavirus emergency.

Wiske, M. S., Sick, M., & Wirsig, S. (2001). New technologies to support teaching for understanding. *International Journal of Educational Research*, 35(5), 483-501.

Yamin, M., & Syahrir, S. (2020). Pembangunan pendidikan merdeka belajar (telaah metode pembelajaran). *Jurnal Ilmiah Mandala Education*, 6(1).

