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ABSTRACT 

 
Novel mathematical models for packing identical circular objects into rectangular 

spaces are here presented. The study explores on different packing patterns that tend to 

increase the population density of a given rectangular space by way of systematic 

repositioning of the objects and by applications of some trigonometric concepts in 

determining the effect of repositioning to the vertical distances between the centers of the 

objects across the contiguous rows. The results showed that if the dimension (rc) of a 

rectangular space is rc = 8x5, where the unit of measure of the space is the diameter of a 

circular object, then the default arrangement of the objects can be repositioned so that the 

content of the space is maximum. The results also showed that a rectangular space 

attains its maximum content if row, r, is a multiple of [ 7.464 ]  and column c ≥ 5. In order  
to determine whether the population density of a rectangular space can be increased by 

applying some packing patterns, two mathematical models are developed, through 

which the exact number of objects that can be accommodated in a space is calculated. 

This study shows that there are deterministic mathematical models of calculating the 

maximal number of identical circular objects that can be packed into rectangular 

spaces. In cases, however, where the rectangular container provides empty space either 

on the row or column or both with length less than the diameter of one circular object, 

then adjustment on the models may be made. Hence, it is recommended that such 

particular cases have to be further explored in future study. 
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INTRODUCTION 

 

As the 21st century unfolds, we see the rapid 

evolution of human civilization whose landscape is 

primarily defined by revolutionary breakthroughs in 

science and technological development vis-à-vis 

population explosion. As human population 

increases day by day resulting to rapid increase in 

the demand for the use of machines, appliances and 

gadgets of all kinds that tend to occupy significant 

livable space at home and to the rapid depletion of 

available arable space, technological advances have 

been on the development of machines and gadgets 

that address space saving concerns and multiple 

capability needs. Consequently, many machines, 

appliances and gadgets are now built with minimum 

sizes and with multiple task capabilities. Television 

sets, computers, communications and 

 
 
 

musical gadgets are few examples of technological 

products that have been miniaturized to save on 

space but with built-in capabilities far exceeding 

their much bigger sized predecessors. 

 

The idea of saving space in technological 

development has been extended to many human 

activities such as maximizing land use, increasing 

population densities of objects, maximizing 

content of boxes, etc. 
 

This study attempted to address a specific 

concern on maximizing content of rectangular 

spaces when populated with circular objects. 

 

It is said that one of the most scientifically 

challenging problems in operation research is 

packing circular and spherical objects in 
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some predetermined rectangular two and three 

dimensional spaces. This is partly because circular 

objects do not tessellate unlike other objects with 

straight edges. Packing circular and spherical 

objects are real world activities being undertaken in 

industries involved in the production, packing and 

transport of such products as textile, sports 

equipment, automobile parts, food and hardware 

products, to mention a few. Application of packing 

patterns may also be extended to agriculture. The 

population density of a rectangular planting area 

may be increased by applying certain packing 

pattern without compromising the required circular 

area allotted to each plant. 

 

Packing circular objects is considered a “very 

interesting NP-hard combinatorial optimization 

problem” because there is “no procedure [that] is 

able to exactly solve them in deterministic 

polynomial time” (Hifi and M’Hallah, 2009). 
 

There were several researches conducted on 

packing circular objects. In a literature review on 

circle and sphere packing problems, Hifi and 

M’Hallah (2009) identified and described the most 

recent studies on the topic. These include the works 

of the following researchers: Stoyan (2003) on 

“Mathematical methods for geometric design”, 

Stoyan (2004) on “A mathematical model and a 

solution method for the problem of placing various-

sized circles into a strip”, Szabo et al. (2007) on 

“New Approaches to Circle Packing in Square”, 

Hifi and M’Hallah (2007 and 2009) on “A dynamic 

adaptive local search algorithm for the circular 

packing problem” and on “Beam search and non-

linear programming tools for the circular packing 

problems”. Locatelli and Raber (2002) stated 

“Packing equal circles in a square”, Maranas et al. 

(1995) on “New results in the packing of equal 

circles in a square”, Boll et al. (2000) on 

“Improving dense packings of equal disks in a 

square”, Markot and Csendes (2005 and 2006) on 

“A new verified optimization technique for the 

packing [of] circles in a unit square problems” and 

on “A reliable area reduction technique for circle 

packing problems”, Correia et al. (2000 and 2001) 

on “A new upper bound for the cylinder packing 

problems” and “Cylinder packing by simulated 

annealing”, Birgin et al. (2005) on “Optimizing the 

packing of cylinders into a rectangular container: 

  
a nonlinear approach”, George et al. (1995) on 

“Packing different-sized circles into a rectangular 

container”, Hifi et al. (2004) on “A simulated 

annealing approach for the circular cutting 

problem”, Lubachevsky and Graham (2009) on 

“Minimum perimeter rectangles that enclose 

congruent non-overlapping circles” and, among 

others, Huang et al. (2005) on “Greedy 

algorithms for packing unequal circles into a 

rectangular container”. 
 

The works of the above-mentioned researchers 

explored on possible ways of packing circular 

objects by determining the radii of circles that either 

optimize or maximize a given rectangular as well as 

circular container. Some of these works include 

determining the minimum perimeters of rectangles 

that enclose identical non-overlapping circles. The 

researchers developed several physical as well as 

electronic approaches of solving various packing 

circles problems ranging from “computer-aided 

optimality proofs, to branch-and-bound procedures, 

to constructive approaches, to multi-start nonconvex 

minimization, to billiard simulation, to multiphase 

heuristics and metaheuristics” (Hifi and M’Hallah, 

2009). These approaches were applied to packing 

problems involving both identical and varied-sized 

circular objects. 

 

Although the published paper presents 

thorough descriptions of the reviewed approaches, 

there was no illustration made showing how the 

approaches could be used to solve some particular 

packing problems. 
 

This work presents a simple investigation on a 

special circle packing problem that deals with 

identical circular objects with fixed sizes and 

rectangular spaces whose dimensions’ unit of 

measure is the diameter of a circle. This special 

packing problem was not thoroughly considered in 

the above studies. In the foregoing studies, various 

sophisticated approaches were developed in solving 

circle packing problems by focusing on minimizing 

the length of the radii of both identical and non-

identical circles in order to attain optimum covers of 

the interiors of given rectangular spaces. Although 

there are studies that deal with packing identical 

non-overlapping circles in squares, the aspect 

considered is the circles which were 
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randomly scattered into the square container. This 

study on the other hand, explored on non-random 

and smooth patterns of fitting the most number of 

identical fixed-sized circles in some pre-

determined dimensions of rectangular spaces. 
 

To ventilate the idea pursued in this study, 

consider the given rectangular packs above that are 

fully filled with circular objects in their default 

positions. The letters R and C denote the row and 

column of the rectangular space, respectively. 

 

The dimension of the rectangular space in figure 

1(a) is rc = 8x4, for figure 1(b), 5x9 and for figure  
1(c), 8x6. 

 

If the objects are rearranged in ways different 

from their original positions such that no two 

contiguous rows are retained in their original 

positions, is it possible for these packs to exceed 

their original contents? The primary aim of this 

study is to develop some mathematical models 

that can be used to calculate the optimal number 

of equal-sized circular objects that can be fitted in 

a given rectangular spaces. 
 
 
 

 

METHODOLOGY 

 

The nature of the study is exploratory. The 

default positions of the circular objects in a two 

dimensional rectangular space (or rc space) require 

that the objects are arranged in rectangular position 

in which the objects are placed along the straight 

lines in both row r and column c. The default 

position is altered, or repositioned, in some ways to 
 
 
 
 
 
 
 
 

R 
 

R 
 
 

 

C C 
 

Figure 1(a) Figure 1(b) 

  

form some new packs. The default pack is 

denoted by Po while a new pack by Pn. 
 

The structural positions of the circles in Pn are 

mathematically analyzed in terms of determining 

the effect of the alteration on the vertical distance 

between the centers of the circles across any two 

contiguous rows in r. The effect of the alteration 

on the content of Pn, in consideration of the 

dimension of rc space, is also explored. 
 

In order to determine whether Pn is tending to 

maximize the number of circles in rc space or 

tending to minimize it, the content of Pn is 

compared with that of Po. The minimum dimension 

of rc space that allows the addition of a layer in row 

r and that makes Pn exceeds the content of Po is 

explored. Finally, the mathematical models of 

computing the contents of Pn are developed and 

proofs for their mathematical viability are provided. 
 
 
 

 

RESULTS AND DISCUSSION 

 

Given a fixed dimension of an rc space, the 

default pack (Fig 2a) when altered in certain way 

may yield the new pack shown in figure 2(b). The 

repositioning of the circles in figure 2(b) is a kind 

that tends to increase the number of layers in row 

r and the density at the middle part of the pack. 

This form of repositioning requires arranging the 

circles in triangular formation.  
The effect of repositioning the circles in the 

manner as in figure 2(b) is row compression. In the 

default position shown in figure 3(a), the distance 

between the centers of the circles across any two 

 
 
 
 
 
 

 

R 
 
 
 
 

 

C 
 

Figure 1(c) 
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contiguous rows is equal to the diameter of a circle. 

In the new position wherein each circle lies in 

between two circles below it, the vertical distance of 

the centers in the default position becomes a slant 

distance in the new position, as shown in figure 3(b) 

above. By applying tangent function in 

trigonometry it can be shown that the vertical 

distance (dn) of the centers of the circles in their 

new position is √3 /2 d, which is 13.4% shorter than 

the original vertical distance (do) of the centers 

across rows. This result means that, except in the 

first row, about 13.4% of the original distance is lost 

in every row due to repositioning. Also, the result 

indicates that there exist a number n of rows in Po in 

which the accumulated loss of distance will create 

enough space that will allow the addition of one 

more row in Pn. 
 

In order to determine this, the difference 

between the height (Ho) of Po and the height (Hn) 

of Pn, for some numbers n of rows, must be equal 

to the height (dn) of the row to be inserted, which 

is √3 /2 d. 
 

The height (Ho) of Po is the product of the 

number of rows (n) and the diameter (d) of a 

circle. Thus,  

Ho = ndo = nd (1) 

 

Similarly, the height (Hn) of Pn is the total 

number (n-1) of shortened vertical distance (dn) 

  
times length of dn which is √3/2 d plus the sum of 

the two un-shortened vertical distances which are 

the bottom radius (1/2d) of the first row and the top 

radius (1/2d) of the last row of circles in Pn. Thus, 
 

Hn =(n-1)(√3/2d)+(1/2d+1/2d)=(n-1)(√3/2)+d (2) 

 

Finally, the number of rows in Po that allows 

the addition of one more row in Pn is given in 

theorem 1. 
 

Theorem 1: Let n∈Z be the number of rows in 

Po and T∈Z be the minimum number of rows in 

Po that accumulates a height enough to 

accommodate one more row in Pn. Then 

T = [ n ]= [ 7.464 ]= 8 
 

Proof:  

When the difference between Ho and Hn is 

equal to the height (√3 /2 d) of the row to be 

inserted, then a row can be added to Pn. Thus, 
 

H o−H n= 3 / 2d   

Where: 3 / 2 d is, as shown above, the height 

(dn) of a row in Pn. 
  

nd - [n-1)(√3/2d)+d]=√3/2d From (1) and (2)  
n=2(2-√3)  

= 7.464 (on solving) 

 

So, the number of rows in Po that accumulates a  

 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 2(a) Figure 2(b)  

Default Pack Po New Pack Pn 
 
 
 
 

 

distance between centers 

 

Figure 3(a) Figure 3(b) 
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height of √3/2d in Pn is 7.464. This is the 
minimum number (T) of rows that will allow the 

insertion of one more row in Pn. However, since 

T is an integer, then there exist n1, n2 ∈ Z (where 

n 2 = n1+1) such that if n 1 < n < n2, then either 

T= n1 or T = n2. Because n1 < n implies that T ≠ 

n1. So, T = n2. T is the least integer ≥ n. Thus,  

T = [ n ] = [ 7.464 ] = 8 

 

From the result above it can be concluded that 

the number of rows that can be repositioned to 

create enough space for the addition of a desired 

number, x, of rows is the least integer greater than 

the multiple of 7.464. This assertion is given in 

theorem 2. 
 

Theorem 2. If x is the desired number of rows to 

be added to Pn and Tx is the total number of rows 

in Po that can be repositioned to make the 

addition of x rows possible, then,  

T x= [ x(7.464) ] where x = 1,2,3… 

  

(7.464)x˥][, where r is any number of rows in the 

interval. 
 

Number of Circles that can be Contained in Pn 

after Repositioning  
The result above can be extended so that 

whenever the dimension of Po is known, then the 

maximum number of circles that can be fitted to 

Pn can be determined. 

 

The formula of computing the maximum 

number of circles to be fitted in Pn, based on the 

dimensions of Po, is given in theorem 3. 
 

Theorem 3. Let r and c be the number of rows 

and columns in Po; x, the number of rows that can 

be inserted in Pn; m, the number of rows with 

maximum number of circles in r; and k, the 

number of rows with maximum number of circles 

in x. Then the total number (Tn) of circles that can 

be fitted in Pn is  
 

 

Proof:  
Since the addition of a row is possible only 

every time 7.464 rows are reached then the 

addition of x rows is possible only when 7.464 

rows are reached x times. Thus the ratio and 

proportion below hold for any x: 
 

1 
= 

x ⇒ T x= x(7.646)  

7.464 

 
 

 T x 
 

   = [ x(7.646) ], since Tx, x Z+ 
 

 

As illustrations, if one wishes to know how many  

rows are there in Po that can allow the insertion of 

1, 2 and 3 more rows in Pn, then the desired totals 

are given below:    

For x =1: T1 = [ x(7.646) ] 14 15 

For x = 2: T2 = [ 2(7.464) ] = [ 14 .928 ]23= 15 

For x = 3: T2= [ 3(7.464) ] = [ 2 .393 ] = 23 

 

These illustrations show that the number of rows 

that can be inserted into a pack containing from 8 to 

14 rows is the same and likewise the number of rows 

to be inserted into a pack containing from 15 to 22. 

In general, the number of rows to be inserted in Pn 

is the same for the interval, [Γx(7. 464)˥]≤r<[Γ(x+1) 

  

 
Tn= ½(r + x)(2c-1), if r and x are of the same parity  

½ [(r + x)(2c – 1) +1], if r and x are of different  
parity 

 

Where x = 
 r  

 

 

 

 

 

7.464 
 

   
 

Proof:  
Case 1. When r and x are of the same parity 

 

If r and x are odd, the number (m) of rows with 

maximum number of circles in r is greater by one 

than the number (r-m) of rows with fewer circles; 

while in x, the number (k) of rows with maximum 

number of circles is one less than the number (x-

k) of rows with fewer circles. Thus,  
m = (r-m)+1 = ½ (r + 1) and k=(x-k)–1=½(x – 1) 

 

In r, the number of circles in an odd row is mc 

and in an even row is (r-m)(c-1). Similarly, in x, 

the number of circles in an odd row is kc and in 

an even row is (x-k)(c-1). Let Tn be the total 

number of circles in Pn. Then, 
 

Tn = [mc + (r-m)(c-1)] + [kc)+(x-k)(c-1)] 

= (mc + rc –r–mc+m)+(kc + xc – x – kc + k)  
= [rc–r+(r +1)/2]+[xc–x+(x– )/2], since 

m = ½ (r + 1) and k = ½ (x – 1) 
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Tn = ½ (r + x)(2c-1) on solving Maximum Number of Extra Circles That Can 
 

      Be Inserted In Pn     
 

   r   The maximum number, Tc, of extra circles that  

 Where x =      

   7.464   can be inserted in Pn, based on the knowledge of the 
 

      content of Po, can be determined. The procedure of 
 

Similarly, if r and x are both even numbers then computing the value of Tc is given in Theorem 4. 
 

the number of odd rows is equal to the number of 
Theorem 4: If r and c are the rows and columns 

 

even rows in both r and x. Thus,  
 

      of Po, To is the number of circles in Po and x is the 
 

m = (r-m) = r/2 and k = (x-k) = x/2 number of rows that can be added to Pn, then the 
 

      total number (T ) of circles that can be inserted to 
 

Consequently,  the  value  of  Tn   is  derived Pn, given that To
c
 = rc, is    

 

similarly as above.     
Tc = ½ [x (2c-1) – r], if r and x are the same parity 

 
 

       
 

Tn =[mc+ (r-m)(c-1]) + [kc) + (x-k)(c-1)] ½ [x(2c–1)+(1-r)], if r and x are of different parity  
 

=(mc+rc–r–mc+ m) + (kc + xc – x – kc + k)            
 

= ( rc –r + m) + (xc – x + k)       
 r  

   
 

= (rc – r + r/2) + (xc – x + x/2),          
 

since m = r/2 and k = x/2 

 Where x =   , as before.    

       7.464     
 

Tn = ½(r + x)(2c-1) on solving            
 

Case 2. When r and x are of different parity 
Proof:          

 

The total number, Tc, of circles that can be         

If r is odd and x is even then the number of rows 
 

inserted  into Pn  is the difference between the  

which contain the maximum number of circles is 
 

 

contents of Po and Pn. 
    

 

greater by one than the number of rows with fewer     
 

           
 

circles in r. Also, the number of rows in x that Case 1: When r and x are of the same parity  
 

contain the maximum number of circles is equal to 
 

 

Since r and x are of the same parity, the value  

the number of rows with fewer circles. Thus, 
 

of Tn, according to Theorem 3, is ½ (r + x)(2c – 1).  

       

m = (r-m) + 1 = (r + 1)/2 and k = (x – k) = x /2 
Consequently, the value of Tc is   

 

           
 

and the total number Tn of circles in Pn is T = T 
n 

– T      
 

      c 
= 

  o      
 

Tn = [mc + (r-m)(c-1)] + [kc + (x-k)(c-1)] 

 ½ (r + x)(2c – 1) – rc   
 

T = ½ [x (2c – 1) – r] on solving  
 

=(mc+rc–r–mc+m)+(kc+xc – x – kc + k) c           
 

            

= [rc – r + (r + 1)/2] + [xc – x + x/2) 
Case 2: When r and x are of different parity 

 
 

Tn = ½ [(r + x)(2c – 1) +1] on solving 

 
 

Since r and x are not both odd integers, Tn is 
 

If r is even and x is odd, then the number of even 
 

equal to ½ [(r + x)(2c–1)+1], according to Theorem  

rows is equal to the number of odd rows in r; while 
 

3.           
 

in x the number of even rows is less by one than the 
          

 

Thus,           
 

number of odd rows. Thus, 
           

 

            
 

m=(r-m)=r/2 and k=(x–k)+1=(x+1)/2 and 
Tc = Tn – To      

 

 = ½ [(r + x)(2c – 1) +1] – rc   
 

Tn = [mc + (r-m)(c-1)] + [kc + (x-k)(c-1)] 
   

 

Tc = ½ [x (2c – 1) + (1 – r)] on solving 
 

=(mc+rc–r–mc+m)+(kc + xc – x – kc + k)            
 

= (rc – r + m) + (xc – x + k) 

on solving 

Corollary 1: A positive value of Tc gives the 
 

Tn = ½ [(r + x)(2c – 1) +1] number of extra circles that can be inserted into Pn.  

      
  

 

Corrolary 2: A negative value of Tc gives the 
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number of circles in Po that cannot be fitted in Pn. 

 

Corollary 3: A zero value of Tc means that the 

number of circles present in both Po and Pn is the 

same. 
 

Minimum Number of Circles in a Row That 

Allows the Insertion of an Extra circle  
The addition of some extra circles is possible 

only if the number of rows in Pn exceeds that of Po. 

However, if the number of circles in the extra rows 

added is less than or equal to the number of circles 

displaced by the repositioning, then addition of 

some extra circles does not happen. Therefore it is 

important to determine the minimum number of 

circles in a row of Po that allows the addition of an 

extra circle whenever an extra row is added to Pn. 
 

Theorem 5. If r is the minimum number of rows 

 

in Po such that 
 r  

= 1 
 

 

 

 

 

7.464 
 

    
 

and c is the minimum number of circles in the 

row of Po that allows the addition of one more 

circles to Pn, then c = 5. 
 

Proof:  
By hypothesis, the minimum number (r) of 

rows that satisfies the given equation is 8, a 

number that is shown previously to be also the 

minimum number of rows that allows the addition 

of one more row (x = 1) in Pn. Theorem 4 is used 

to compute the minimum number of circles that 

allows the addition of one more circles in Pn by 

letting Tc equal to 1. Thus,  
Tc = ½ [x (2c – 1) + (1- r)], since r and x are of 

different parity. 

1 = ½ [1 (2c – 1) + (1 – 8)], since x = 1, r = 8, 

and Tc = 1  
5 = c, on solving  

This means that when Po contains 8 rows and 5 

columns one more circle can be added to Pn. 
 

Maximum Number of Circles That Can Be Fitted 

to a New Pack (Pm) by Partial Repositioning  
In the previous manner of repositioning the 

circles, addition of a row in Pn is possible every 

time 7.464 rows are reached in Po, as shown in 

theorems 1 and 2, and for these given rows addition 

of a circle in Pn is possible every time a column is 

  

added in excess of four columns in Po, as shown in 

theorems 4 and 5. For instance, one circle can be 

inserted to Pn if Po contains 8 rows and 5 columns 

and for this given number of rows two circles can 

be inserted to Pn if a column is added to Po. 
 

 However, since the number of rows to 
 

be added to P 

n 

is the same for the interval , 
 

 .     ..464646)˥] where x is any 
 

[Γx (7 .4 6464 6)˥]≤r<[Γ(x+1 )(7      

             

integer, then repositioning the rows in excess of 
 

[ x(7.464) ] but less than [ 7.464 ] result in the 
displacement of some circles because the alternate 
rows contain fewer circles. 
 

Thus, in order to obtain the maximum number (Tm) 

of circles that can be fitted to a new pack (Pm) it is 

logical to reposition the number of rows equal to  

[ x(7.464) ] and to retain in their original positions 
 

the number of excess rows less than [ 7.464 ]. 
This situation is illustrated in figures 7(a), 7(b) 

and 7(c), where Po contains 50 circles with 10 

rows and 5 columns. 
 

The procedure of computing the maximum 

number (Tm) of circles that can be fitted to Pm is 

given in theorem 6. 
 

Theorem 6. Let x be the number of rows that can 

be added to Pn, r and c be the number of rows and 

columns in Po and Tx be a subset of r that can 

allow the addition of x rows. Then the number 

(Tm) of circles that can be fitted to a new pack 

(Pm) is maximum if the Tx rows are the only ones 

repositioned. Tm is given below:  
 

Tm = ½[2c(x+r)–(Tx+x)], if Tx and x are of the same parity 
 

 = ½ [2c (x + r) – ( Tx + x) + 1], if Tx and x are of different 
 

parity    
 

   r  
 

 Where, as before, x =  

 and  

 

7.464 

 

 
Tx = [ x(7.464) ]. 

  
 

    
 

 

 

Proof:  

By assumption, Tx is the number of rows in r 

that can allow the addition of x more rows after 

repositioning and thus r–Tx is the number of rows 

in r that cannot allow the addition of a row by the 
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Po:rc Pa:Ta Pm:Tm 
 

Figure 7(a) Figure 7(b) Figure 7(c) 
 

 

same action. The total number of circles in Tx 

rows is given in Theorem 3, which is either  
½[(r + x)(2c-1)] or ½ [(r + x)(2c – 1) +1], 

depending on whether x and r are of the same or 

different parity, and where r is replaced by Tx. The 

total number of circles in r–Tx rows is (r–Tx) c 

because this part is made to remain in its original 

position. Thus, the total number (Tm) of circles that 

can be fitted in Pn by partial repositioning is 
 

Tm = Tn + (r – Tx)c. 

Where:  Tn = ½(Tx+ x)(2c-1) or  
= ½ [(Tx + x)(2c – 1) +1] 

 

Case 1. When x and Tx are of the same parity. 

Tm = Tn + (r – Tx) c  
= ½(Tx+ x)(2c-1) + (r – Tx) 

c, by Theorem 3.  
= ½ [2c(x + r) – (Tx + x)] on solving 

 

Case 2. When x and Tx are of different parity 

Tm = Tn + (r – Tx) c  
= ½ [(Tx + x)(2c – 1) +1] + (r – 

Tx), by Theorem 3.  
= ½ [2c(x + r) – (Tx + x) + 1]  on solving 

 

It now remains to show that Tm ≥ Tn for any 

column (c). It suffices to consider only one case, 

say, case 1. 
 

Show that Tm ≥ Tn. Assume that r and x are of 

the same parity. Then 

 

Tn = ½(r + x)(2c-1) 

= ½[(Tx + x) + (r – Tx)](2c-

1), since r = Tx + (r – Tx) 

 
 

 

= ½[(Tx + x) (2c-1) + (r – Tx)(2c-1)] 

≤ ½[(Tx + x) (2c-1) + (r – Tx) 2c], 

since (r – Tx) ≥ 0  
= ½[(2cTx+2cx – Tx – x + 2cr – 

2cTx] = ½[(+ 2cx + 2cr – Tx – x] = 

½[2c (x + r) – (Tx + x)]  

= Tm 

 

Therefore Tm is the maximum number of 

circles that can be fitted in Pm. 
 

Corollary 1: Tm > Po, if x ≥ 1 and c ≥ 5. 

Corollary 2: Tm = Tn, if r is a multiple of Tx.  

Corollary 3: Tm ≥ Tn, if r is not a multiple of 

Tx and x > 0. 
 

Maximum Number of Circular objects that can 

be Inserted in Pm  

The formula in determining the number (Tc) of 

circles that can be inserted in Pm is derived similarly 

as the formula in determining the number of circles 

that can be inserted in Pn. Thus, if x is the number of 

rows that can be added, Tx is the number of rows 

that can allow the insertion of x additional rows and 

r is the number of rows in Po, then, 
 

Tc= ½ [x (2c-1)–Tx], if x and Tx are of the same parity ½ 

[x (2c – 1) + (1- Tx)], if x and Tx are of different 

 

parity Where x = 
 r  

, as before and  

 

 

 

 

7.464 

 

    
  

Tx = [ x(7.464) ] 
 

As illustrations, compute the maximum number 

of circular objects that can be fitted in the default 
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pack, Po, new pack, Pn and new pack, Pm, given 

that the rectangular container (or RC space) has 

dimensions, r x c = 20 x 10.  
Solutions  
1. The number of circular objects that can be 

fitted in Po is To. 
 

To = rc = (20)(10) = 200 

 

2. The number of objects in Pn is Tn.  
 

x=  r  =  20  = [ 2.680 ] = 2  
 

 

  

 

 

 

 

7.464 
 

7.464 
  

 

        
 

Tn = ½(r + x)(2c-1), since r and x are of the 

same parity  
= ½(20+2)[2(10)-1]  
= ½(22)(19)  
= 209 

 

 14 15 
 

3. The number of objects in Pm is Tm.  
 

Tx= [ x(7.464) ] = [ 2(7.464) ] = [ 14 .928 ] = 15 , 
 

since x = 2 
20 

 
 

  
 

Tm= ½ [2c (x + r) – ( Tx + x) + 1], Since 
 

x and Tx are of different parity  
 

= ½ [(2)(10) (2 +20) – ( 15 +2) + 1]  
 

= 212   
 

 

4. Tc= ½ [x (2c – 1) + (1- Tx)], since x and Tx are 

of different parity: x = 2, Tx = 15.  
= ½ [2 (2(10) – 1) + (1- 15)]  
= ½ [38) + (-14)]  
= ½ (24)  
= 12 

 

In the given examples, Pn contains 9 objects 

more than that of Po and in turn, Pm contains 3 

objects more than that of Pn. Therefore, packing a 

rectangular container with circular objects by way of 

Pm yields the maximum content of the container. 

  

Refinement of the Models  
A refinement of the above models of computing 

the maximum number of circular objects that can be 

contained in Pn, or the maximum number of objects 

that can be added to Pn, due to repositioning may be 

made by simply utilizing the fact about the 

minimum number of rows, r, in Po that allows the 

addition of one more row in Pn and about the 

minimum number of columns, c, in Po that allows 

the addition of an object in Pn. 
 

Since addition of a row in Pn is possible every 

time the number of rows in Po is a multiple of  
7.464 and addition of an object is possible 

whenever the number of columns, c, in Po is c ≥ 5,  

then the total number, Ta, that can be added to Pn, 

and consequently the total number, Tn, of objects 

that can be contained in Pn are the following: 
 

Ta = (c-4)( 
 r   

) 

  
 

 

  

 

   

7.464 

  
 

       
 

   r      
 

or if x = 
  

 

     

7.464 
    

 

       
 

T
a = (c-4)x  and   

 

Tn = rc + Ta      
 

 = rc + (c-4)x    
 

 = rc + cx - 4x    
 

Tn = c(r+x) – 4x    
 

From the model, it should be noted  that 
 

Tn contains maximum number if r is equal to 
 

[ k(7.464) ] for and c ≥ 5. 
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CONCLUSIONS AND RECOMMENDATIONS 

 

Based on from the results, this study shows 

that there are deterministic mathematical models 

of calculating the maximum number of identical 

circular objects that can be packed into 

rectangular spaces. 

 

The models developed may be used to 

determine the maximum number of circular 

objects that can be packed in a given rectangular 

space, be that objects be vials in hospital, 

cigarette sticks in factories, pipes in hardware or 

planting materials in agriculture. 
 

The mathematical models generated from the 

study may be used as bases in designing a 

rectangular container that can accommodate the 

maximum number of objects to be packed. 
 

 

The mathematical procedures generated from the 

study may be a source of academic discourses in the 

academe, particularly serving as an example of a 

mathematical investigatory undertaking.  
Since the study does not consider the situation 

where the rectangular space provides extra space 

along its dimensions in which case, necessary 

adjustment on the existing model has to be made, 

it is recommended that future study may consider 

such a case. 
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